Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Промежуточный характер наследования. Дигибридное скрещивание.




Мендель скрещивал растения гороха, которые различаются по двум парам альтернативных признаков, например не только по окраске, но и по форме семян. При этом гены окраски и формы семян расположены в разных парах гомологичных хромосом. Скрещивание особей, различающихся по двум парам альтернативных признаков, называют дигибридным.

Мендель скрестил растение гороха с желтыми гладкими семенами с растением с зелеными морщинистыми семенами (желтая окраска доминирует над зеленой, а гладкая форма семян – над морщинистой). Оказалось, что все гибриды первого поколения имели желтые гладкие семена, то есть правило доминирования проявилось и при дигибридном скрещивании. У гибридов обнаруживаются доминантные признаки по каждой паре аллельных генов.

От гибридов первого поколения путем самоопыления Мендель получил растения второго поколения, у которых наблюдалось расщепление по фенотипу: на 9 растений с желтыми гладкими семенами приходилось 3 растения с желтыми морщинистыми семенами, 3 – с зелеными гладкими семенами и 1 растение с зелеными морщинистыми семенами. Формула расщепления по фенотипу в этом случае выглядит так: 9:3:3:1. Из формулы видно, что соотношение общего числа желтых и зеленых семян составляет 12:4 или 3:1. Соотношение гладких и морщинистых семян было таким же.

Это явление, установленное Менделем, позднее было названо третьим законом независимого наследования или законом независимого распределения генов.

Суть его заключается в том, что каждая пара аллельных генов наследуется независимо от другой и дает расщепление в соотношении 3:1.

При дигибридном скрещивании аллель, определяющий доминантный признак – гладкую форму семян, обозначается прописной буквой В, а рецессивный, определяющий морщинистую форму семян,- строчной буквой b. С учетом того, что все хромосомы и гены в соматических клетках парные, а гены формы и гены окраски семян располагаются в разных парах хромосом, генотипы родительских форм обозначаются так: ААВВ – растения с желтыми гладкими семенами, aabb – растения с зелеными морщинистыми семенами. При образовании гамет в результате независим 1000 ого расхождения хромосом в анафазе мейоза I в одну половую клетку попадает по одному гену из каждой пары: АВ либо ab.

В результате слияния гамет АВ и ab гибриды первого поколения имеют генотип АаВЬ и фенотип желтые гладкие семена. У гибридных растении образуется уже четыре типа гамет: АВ, Ab, аВ, ab. Вы видите, что девять растений имеют желтые гладкие семена и в их генотипе обязательно есть гены А и B; три растения имеют желтые морщинистые семена, в их генотипе нет гена B, а есть гены А и Ь; три растения имеют зеленые гладкие семена, в их генотипе нет гена A, а есть гены а и B; одно растение имеет зеленые морщинистые семена, что возможно лишь при отсутствии обоих доминантных генов и наличии только рецессивных генов а и Ь.

Обратите внимание на то, что растения, имеющие одинаковый фенотип, например желтые гладкие семена, могут различаться по генотипу (ААВВ, ААВЬ, АаВВ, АаВЬ). Общая формула генотипов с желтыми гладкими семенами может быть записана так: А-В-. Общая формула генотипов растений с желтыми морщинистыми семенами -А-ЬЬ, с зелеными гладкими семенами -ааВ-, с зелеными морщинистыми семенами -ааЬЬ. Таким образом, только по фенотипу нельзя судить о генотипе особи. Генотип можно определить при помощи так называемого анализирующего скрещивания. Для этого особь, генотип которой неизвестен, скрещивают с рецессивным гомозиготным организмом, генотип которого aa (если анализируется один признак) или ааЬЬ (если анализируются два признака).

Допустим, нам нужно определить генотип растения гороха с желтой окраской семян. Его генотип может быть либо Aa, либо AA. Проводят анализирующее скрещивание с организмом, генотип которого aa, а фенотип – зеленая окраска семян. Если все потомство окажется с желтыми семенами, значит, исследуемый организм будет гомозиготным, а его генотип – AA. Если же в потомстве произойдет расщепление признаков в соотношении 1:1, значит, исследуемый организм гетерозиготен – Aa. Анализирующее скрещивание используют в селекции для определения генотипов особей.

Всегда ли при скрещивании двух особей потомство похоже лишь на одного из родителей? Оказывается, не всегда. В некоторых случаях признаки у гибридов первого поколения имеют промежуточный характер, то есть фенотип гетерозигот отличается от фенотипа как рецессивных, так и доминантных гомозигот. Так, если скрестить растение ночная красавица с красными цветками и генотипом AA с растением, имеющим белые цветки и генотип aa, все гибриды первого поколения будут иметь генотип Aa, а фенотип – розовую окраску цветков. Это явление называют неполным доминированием, или промежуточным наследованием. Это означает, что ген А не полностью подавляет проявление рецессивного гена а. Во втором поколении наблюдается расщепление признаков: 1 AA – красные цветки, 2 Aa – розовые цветки, 1 aa – белые цветки. При неполном доминировании расщепление по фенотипу совпадает с расщеплением по генотипу.

Рассмотрите рисунок (рельефную таблицу) с изображением стадий зародышевого развития позвоночных животных. Какие особенности эмбрионального развития животных свидетельствуют о единстве происхождения позвоночных? На каких этапах развития обнаруживаются признаки типа, класса, отряда, вида? О чем они свидетельствуют?

Общность человека и позвоночных животных подтверждается общностью плана их строения:
* скелет,
* нервная система,
* системы кровообращения,
* дыхания,
* пищеварения.
Особенно убедительно родство человека и животных обнаруживается при сравнении их эмбрионального развития.
На его ранних этапах зародыш человека трудно отличить от зародышей других позвоночных животных.
В возрасте 1,5 – 3 месяцев у него имеются жаберные щели, а позвоночник оканчивается хвостом. Очень долго сохраняется сходство зародышей человека и обезьяны.
Специфические (видовые) человеческие особенности возникают лишь на самых поздних стадиях развития










БИЛЕТ№ 24

Сцепленное наследование генов. Хромосомная теория наследственности Т.Моргана.

Хромосомная теория наследственности[1] — теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы — более 1 тыс., а у человека — около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин — 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов — Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.










Последнее изменение этой страницы: 2018-04-12; просмотров: 285.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...