Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

История открытия атмосферного давления




Актуальность

Актуальность выбранной темы исследования обусловлена

Атмосфера

Все тела во Вселенной притягиваются друг к другу.

Земля притягивает к себе всё, что на ней находятся, в том числе окружающую ее газовую оболочку – атмосферу.

Атмосфера — газовая оболочка небесного тела, удерживаемая около него гравитацией.

Состав

Газ Содержание по объёму, % Содержание по массе, %
Азот 78,084 75,51
Кислород 20,946 23,14
Аргон 0,934 1,3
Углекислый газ 0,03 — 0,04[7] 0,05[8]
Неон 1,818·10−3 1,2·10−3
Гелий 5,24·10−4 8·10−4
Метан 1,7·10−4[9] — 2·10−4  
Криптон 1,14·10−4 2,9·10−4
Водород 5·10−5 3,5·10−6
Ксенон 8,7·10−6 3,6·10−5

 Приблизительно:

Азот – 79%

Кислород – 20%

Другие газы – 1%

Строение атмосферы (Воздушные "этажи")

Пограничный слой атмосферы

Нижний слой тропосферы (1—2 км толщиной), в котором состояние и свойства поверхности Земли непосредственно влияют на динамику атмосферы

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом.
Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 метров.


Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от минус 56,5 до +0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой. В середине XIX века полагали, что на высоте 12 км (6 тыс. туазов) заканчивается атмосфера Земли (Пять недель на воздушном шаре, 13 гл). В стратосфере располагается озоновый слой, который защищает Землю от ультрафиолетового излучения

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и так далее. обусловливают свечение атмосферы.

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.

Термосфера

Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности — например, в 2008—2009 годах — происходит заметное уменьшение размеров этого слоя

Термопауза

Область атмосферы, прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура практически не меняется с высотой.

Экзосфера (сфера рассеяния)

Зона рассеяния, внешняя часть термосферы, расположенная выше 500—1000 км (в зависимости от солнечной активности). Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство

Как создается атмосферное давление

В учебниках физики давлением называют распределение силы по поверхности.

У воздуха есть масса->есть вес ->создается давление.

От чего зависит атмосферное давление

Атмосферное давление существенно убывает с высотой. Так на высоте 5000 м оно уже примерно в два раза ниже, ведь воздушных этажей над нами становится меньше. При подъеме на 10,5 метра атмосферное давление понижается на 1 мм ртутного столба.Но давление изменяется не только с высотой. В одном и том же пункте на земной поверхности атмосферное давление, то увеличивается, то уменьшается. Причина колебаний заключается в том, что давление воздуха зависит от его температуры. Воздух при нагревании расширяется. Теплый воздух легче холодного, поэтому 1м3 воздуха на одной и той же высоте весит меньше, чем 1м3 холодного. Значит, давление теплого воздуха на земную поверхность меньше, чем холодного

 

История открытия атмосферного давления

Изучение атмосферного давления имеет большую и поучительную историю. Как и многие другие научные открытия, оно тесно связанос практическими потребностями людей.

Устройство насоса было известно еще в глубокой древности. Однако и древнегреческий ученый Аристотель, и его последователи объясняли движение воды за поршнем в трубе насоса тем, что «природа боится пустоты». Истинная же причина этого явления — давление атмосферы — им была неизвестна.

В конце первой половины XVII в. во Флоренции — богатом торговом городе Италии — строили так называемые всасывающие насосы. Устройство такого насоса несложно: он состоит из вертикально расположенной трубы, внутри которой имеется поршень. При подъеме поршня вверх за ним поднимается вода. При помощи этих насосов хотели поднимать воду на большую высоту, но насосы «отказывались» это делать.

Обратились за советом к Галилею. Галилей исследовал насосы и нашел, что они исправны. Занявшись этим вопросом, он указал, что насосы не могут поднять воду выше, чем на 18 итальянских локтей (приблизительно 10 м). Но разрешить вопрос до конца он не успел.

После смерти Галилея эти научные исследования продолжил его ученик — Торричелли. Торричелли занялся и изучением явления поднятия воды за поршнем в трубе насоса! Для опыта он предложил использовать длинную стеклянную трубку, а вместо воды взять ртуть. Впервые такой опыт был проделан его учеником Вивиани в 1643 г.

Раздумывая над этим опытом, Торричелли пришел к заключению, что истинной причиной поднятия в трубке ртути является давление воздуха, а не «боязнь пустоты». Это давление производит воздух своим весом. (А что воздух имеет вес — было уже доказано Галилеем.)

Об опытах Торричелли узнал французский ученый Паскаль. Он повторил опыт Торричелли с ртутью и водой. Однако Паскаль считал, что для окончательного доказательства факта существования атмосферного давления необходимо проделать опыт Торричелли один раз у подножия какой-нибудь горы, а другой раз на вершине ее и измерить в обоих случаях высоту ртутного столба в трубке. Если бы на вершине горы столб ртути оказался ниже, чем у подножия ее, то отсюда следовало бы заключить, что ртуть в трубке действительно поддерживается атмосферным давлением.

«Легко понять, — говорил Паскаль, — что у подножия горы воздух оказывает большее давление, чем на вершине ее, меж тем как нет никаких оснований предполагать, чтобы природа испытывала большую боязнь пустоты внизу, чем вверху».

Такой опыт был проведен, он показал, что давление воздуха на вершине той горы, где производились опыты, было почти на 100 мм рт. ст. меньше, чем у подножия горы. Но Паскаль этим опытом не ограничился. Чтобы еще раз доказать, что ртутный столб в опыте Торричелли удерживается атмосферным давлением, Паскаль поставил другой опыт, который он образно назвал доказательством пустоты в пустоте.

Сейчас такой опыт Паскаля можно осуществить с помощью прибора, изображенного на рисунке 333, где А — прочный полый стеклянный сосуд, в который, пропущены и впаяны две трубки: одна—от барометра Б, другая (трубка с открытыми концами) — от барометра В.

Прибор устанавливают на тарелку воздушного насоса, В начале опыта давление в сосуде А равно атмосферному, оно измеряется разностью высот h столбов ртути в барометре Б. В барометре же В ртуть стоит на одном уровне. Затем из сосуда А воздух выкачивают насосом. По мере удаления воздуха уровень ртути в барометре Б понижается, а в левом колене барометра В повышается. Когда воздух будет полностью удален из сосуда А, уровень ртути в узкой трубке барометра Б упадет и сравняется с уровнем ртути в его широком колене. В узкой же трубке барометра В ртуть под действием атмосферного давления поднимется на высоту h (рис. 334). Этим опытом Паскаль еще раз доказал существование атмосферного давления.

Опыты Паскаля окончательно опровергли теорию Аристотеля о «боязни пустоты» и убедительно подтвердили существование атмосферного давления.










Последнее изменение этой страницы: 2018-05-10; просмотров: 965.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...