Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Свойства коллекторов нефти и газа. Типы коллекторов нефти и газа




 

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке, называются коллекторами. На формирование геометрии порового пространства коллекторов и, следовательно, на их филь­трационные характеристики влияют структура и текстура пород.

Структура осадочных горных пород — размеры и форма слагающих породу минеральных зерен или условных неделимых (биоморфных или детритовых остатков, скелетов организмов, оолитов и т. п.).

Текстура — характер взаимного расположения компонентов породы и их пространственная ориентация. Емкостное пространство включает емкости двух видов: седиментационные и постседиментационные, в кото­рых все изменения протекают с разной интенсивностью, опреде­ляемой в первую очередь типом коллектора.

1 Пустотность (пористость) – наличие в горной породе пустотного пространства. Пустотное пространство определяется размерами, конфигурацией, укладкой частиц, слагающих породу и образующих поры, наличием в порах цементирующих веществ, а также трещин и каверн.

Под пористостью понимают пустотность породы-коллектора.. Для характеристики пористости употребляется коэффициент, который показывает, какую часть от общего объема породы составляют поры.

По размерам все поры делятся на сверхкапиллярные (> 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (<0,2 мкм).

В сверхкапиллярных порах движение воды подчинено законам гидравлики. Вода, нефть и газ в них свободно перемещаются под дей­ствием гравитационных сил. В капиллярных порах движение жидкости затруднено вследствие проявления сил молекулярного сцепления. Субкапиллярные поры характерны для глинистых пород, которые являются водо- и нефтегазоупорными. Фильтрация воды по таким породам невозможна.

Различают общую, открытую и эффективную пористость.

Общая (полная, абсолютная) пористость — это объем всех пор в породе. Соот­ветственно коэффициент общей пористости представляет собой отно­шение объема всех пор Vп к объему образца породы Vобр

mп = Vп/Vобр

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость – объем только тех пор, которые связаны, сообщаются между собой. Она характеризуется коэффициентом открытой пористости – отношением суммарного объема открытых пор Vо.п.к объему образца породы Vобр:

mо = Vо.п./ Vобр

Эффективная пористость – пористость, которая оп­ределяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры. Коэффициент эффективной пористости неф­тесодержащей породы равен отношению объема пор, через которые возможно движение нефти, воды или газа при определенных температуре и градиентах давления Vэ, к объему образца породы Vобр:

mэ = Vэ/ Vобр

Для характеристики двух- или трёхфазных систем применяется понятие динамической пористости. Коэффициент динамической пористости определяется отношением объема движущейся в породе жидкости Vд к объему образца Vобр:

mд = Vд/ Vобр

Динамическая пористость всегда ниже эффективной, поскольку в эффективный объем пор включается также объем неподвижных жидкостей и газов, удерживаемых поверхностно-молекулярными силами.

2 Кавернозность — наличие в горной породе пустот непра­вильной или округлой формы размером более 1 мм. Она харак­теризуется коэффициентом кавернозности, равным отношению суммарного объема всех каверн Vкк объему образца породы Vобр

mк = Vк/ Vобр

3 Гранулометрический состав горной породы харак­теризует количественное содержание в ней частиц различной ве­личины. Гра­нулометрический состав влияет на особенности эксплуата­ции нефтесодержащнх коллекторов, нефтеотдачу и различные био­химические процессы в продуктивных пластах.

По размеру частиц (мм) породы разделяются на три группы: пески или псаммиты 1—0,1; алевриты 0,1—0,01; пелиты менее 0.01. Породы относятся соответственно к псаммитам, алевритам или пелитам, если содержат по 50- 80 % частиц той или иной группы.

Для определения гранулометрического состава керн породы освобождают от нефти и воды. Для этого его помешают в экст­ратор и обрабатывают определенными растворителями. Гранулометрический состав таких пород, как пески, рыхлые песчаники и другие, легко распадающиеся на составляющие зерна, определяют ситовым анализом. В практике для гранулометриче­ского анализа применяют сита с отверстиями 1.0; 0,5; 0,25: 0,1 мм. реже — 0,04 мм. Еще более мелкие частицы разделяются гидрав­лическими методами.

4Трещиноватость — наличие в породе трещин. Тре­щины – это разрывы в горной породе (без перемещения блоков породы), характеризующиеся раскрытостью от десятков микрон до миллиметров, преимущественно тектонического происхожде­ния. Раскрытость трещин позволяет приближенно оценить величины трещинной пустотности и трещинной проницаемости.

5 Проницаемость — способность породы пропускать через себя жидкости и газы (при наличии перепада давления). Она ко­личественно характеризует фильтрационные свойства коллектора.

Для оценки абсолютной проницаемости горных пород обычно используют линейный закон фильтрации Дарси:

Согласно этому закону проницаемость kпр – константа пропор­циональности, характеризующая пористую среду, причем в иде­альном случае она не зависит от типа фильтруемой жидкости.

При движении через образец неоднородной жидкости, пред­ставленной несколькими фазами (газ—вода, нефть—вода, газ— нефть, газ—нефть—вода), величины проницаемости, определяе­мые по фильтрации каждой из фаз, будут отличаться от абсолют­ной проницаемости и одна от другой. Различают эффективную (фазовую) проницаемость для данного газа или жидкости при одновременном присутствии в порах другой фазы — жидкой или газообразной. Она изменяется в зависимости от характера фазы, температуры и давления н выражается в относительных еди­ницах.

Отношение величины эффективной проницаемости к абсолют­ной называется относительной проницаемостью породы.

6 Коэффициентом водо-, нефте-, газонасыщенности (kв, kн, kг) называется отношение объема воды, нефти или газа (Vв, Vн, Vг),содержащихся в пустотном пространстве породы, к объему пустот (Vп): kв= Vв / Vп; ka=Vн / Vп; kr=Vг / Vп.

Сумма коэффициентов насыщенности породы нефтью, водой и газом равна единице. Обычно коэффициенты нефте- и газонасыщенности определяют по коэффициенту водонасьаценности Ав, исходя из соотношения kн(г) =1– kв.

7 Удельная поверхность г.п. – суммарная поверхность частиц или поровых каналов содержащихся в ед. объема образца.

SУД=T/V

T – суммарная поверхность частиц, либо поровых каналов в образце [м2]

V – объем образца

8 Механические свойства г.п.:

1) Упругость г.п.

2) Прочность на и разрыв

3) Пластичность г.п.

Упругие свойства г.п. На состояние пласта, режим его работы, существенное влияние могут оказывать упругость коллектора и содержащиеся в нем флюиды. Если пластовое давление падает, то Н и В в пласте расширяются, а поровые каналы сужаются, в следствие того, что внешнее давление на пласт остается постоянным, а внутреннее уменьшается.

Упругую энергию г.п. принято характеризовать коэффициентами сжимаемости.

Коэффициент сжимаемости пласта, коэффициент сжимаемости пор, коэффициент сжимаемости поровой среды.

Пластические свойства г.п. – при упругих деформациях зерна породы и цементирующей материал. При увеличении давления свыше предела упругости (прочности), цементирующий материал разрушается, зерна породы смещаются относительно друг друга, плотность упаковки увеличивается до исчезновения пустот в г.п. (для пород гранулярного типа).

Под прочностью г.п. понимают их сопротивление механическому разрушению. Прочность пород на сжатие во много раз превышает прочность на разрыв.

9 Тепловые свойства г.п.

1) Удельная теплоемкость

2) Коэффициент теплопроводности

3) Коэффициент температуропроводности

4) Коэффициент линейного и объемного расширения

 

Коллекторы классифицируются по целому ряду признаков, поэтому имеется множество различных их классификаций. Наиболее важными классификационными критериями являются:

- тип емкости;

- литологический состав.

- величина пористости;

- величина проницаемости.

 

Классифакация коллекторов по типу емкости:

1 Поровый

2 Трещинновый

3 Каверновый

4 Трещинно-поровый

5 Трещинно-порово-каверновый

6 Каверно-поровый

Классификация коллекторов по литологическому составу:

Наиболее распространенные коллекторы нефти и газа — терригенные и карбонатные породы.

Терригенные породы-коллекторы представлены в основном пе­счаниками и алевролитами. Основные их показатели — грануло­метрический состав, форма и характер поверхности минеральных зерен.

Карбонатные породы-коллекторы представлены известняками и доломитами. Формирование их емкостей определяется как гене­зисом, так и особенностями постседиментацнонных преобразова­ний, в первую очередь трещиноватостью и последующим выщела­чиванием пород. Развитие трещиноватости в карбонатных поро­дах обусловлено литологическими особенностями пород.

Классификация коллекторов по величине пористости:

Класс коллектора   Эффективная пористость, % Емкость коллектора
А > 20 Большая
Б 20-15 Большая
С 15-10 Средняя
D 10-5 Средняя
Е < 5 Малая

 

Классификация коллекторов по величине проницаемости:

 

Класс Коллекторы Коэффициент проницаемости, мкм2
I Очень хорошо проницаемые более 1
II Хорошо проницаемые 0,1-1
III Среднепроницаемые 0,01-0,1
IV Слабопроницаемые 0,001-0,01
V Непроницаемые менее 0,001

 

            3 Природные режимы залежей нефти и газа

 

Природным режимом залежи нефти и газа называют совокупность естественных сил, которые обеспечивают перемещение нефти и газа в пласте к забоям добывающих скважин. Основные источники движущих сил в нефтяных залежах: упругость жидкости и породы, давление сжатого газа газовой шапки, упругость выделяющегося из нефти растворенного газа, собственная сила тяжести нефти, дифференциальная энергия внутренних поверхностей пористой среды и жидких фаз.

По признаку доминирующего проявления источника движущих сил выделяют режимы нефтяных залежей: водонапорный, упруговодонапорный, режим газовой шапки, растворенного газа, гравитационный.

В природе широко распространены режимы залежей, при которых нефть или газ извлекаются из пластов за счет действия двух или даже трех видов энергии. Такие природные режимы называются смешанными. Относительная роль каждого из видов энергии может быть различной на разных этапах разработки.

1 Упругий режим

Условие упругого режима – превышение пластового давления, точнее давления во всех точках пласта, над давлением насыще­ния нефти газом рн. При этом забойное давление рз не ниже рн, нефть находится в однофазном состоянии. Приток нефти происходит за счет энергии упругости жидкости (нефти), связанной воды и породы — энергии их упругого расширения. При сниже­нии давления увеличивается объем нефти и связанной воды и уменьшается объем пор; соответствующий объем нефти посту­пает в скважины.

В объеме всего пласта упругий за­пас нефти составляет обычно малую долю (приблизительно 5— 10 %) по отношению к общему запасу, однако он может выра­жать довольно большое количество нефти в массовых единицах.

Упругий режим будет переходить во вторую разновидность — упруговодонапорный режим. Упруговодонапор­ный режим обусловлен проявлением энергии упругого расшире­ния нефти, связанной воды, воды в водоносной области, пород пласта в нефтяной залежи и в водоносной области и энергии напора краевых вод в водоносной области.

Для упруговодонапорного режимов ха­рактерно значительное снижение давления в начальный период постоянного отбора нефти (или снижение текущего отбора при постоянном давлении рз). При упруговодонапорном режиме темп дальнейшего снижения давления (текущего отбора) за­медляется. Это связано с тем, что зона возмущения охватывает увеличивающиеся во времени объемы водоносной области и для обеспечения одного и того же отбора нефти требуется уже меньшее снижение давления. Если внешняя граница водоносной области находится выше (на более высокой гипсометрической отметке), чем забой скважины, то кроме энергии упругости дей­ствует потенциальная энергия напора (положения) контур­ной воды.

2 Водонапорный режим

С момента начала распространения депрессионной воронки за пределы водонефтяного контакта (ВНК) в законтурную водо­носную область вода внедряется в нефтяную зону и вытесняет нефть к забоям добывающих скважин. Когда наступает равно­весие (баланс) между отбором из залежи жидкости и поступле­нием в пласт краевых или подошвенных вод при пластовых тер­модинамических условиях, проявляет себя водонапорный ре­жим, который еще называют жестким водонапорным вследствие равенства количеств отобранной жидкости (нефти, воды) и вторгшейся в залежь воды. Существование его связывают с на­личием контура питания и с закачкой в пласт необходимых объ­емов воды для выполнения этого условия. В естественных усло­виях такой режим в чистом виде не встречается, однако его выделение способствует успешному и достаточно надежному проектированию процесса извлечения нефти. Нарушение равно­весия между отбором жидкости и поступлением воды приводит к тому, что начинают играть роль энергии других видов: при увеличении поступления воды — энергия упругости; при умень­шении поступления воды (увеличении отбора) и снижении дав­ления ниже давления насыщения — энергия расширения раство­ренного газа. При водонапорном режиме нефть в пласте нахо­дится в однофазном состоянии; выделения газа в пласте не происходит, как и при упругом режиме.

3 Режим растворенного газа

Режим растворенного газа обусловлен проявлением энергии расширения растворенного в нефти газа при снижении давле­ния ниже давления насыщения. Снижение давления ниже зна­чения рн сопровождается выделением из нефти ранее растворен­ного в ней газа. Пузырьки этого газа, расширяясь, продвигают нефть и сами перемещаются по пласту к забоям скважин. Часть пузырьков газа сегрегирует (всплывает), накапливаясь в своде структуры и образуя газовую шапку. Режим растворенного газа в чистом виде может проявиться в пласте, содержащем нефть, полностью насыщенную газом (начальное давление     рпл = рн). Этот режим протекает в две фазы. В течение первой фазы депрессионная воронка каждой скважины расширяется до слия­ния с воронками других скважин или до естественной границы пласта (контура нефтеносности). Во второй фазе происходит общее снижение давления в залежи и на линиях слияния депрессионных воронок или на границе пласта. Для него харак­терны высокий темп снижения пластового давления (отборов нефти) и непрерывное изменение газового фактора (отношение расхода добываемого газа, приведенного к стандартным условиям, к расходу дегазированной нефти): вначале увеличение до максимального значения, затем уменьшение. Если залежь ха­рактеризуется некоторым превышением начального давления рпл над давлением ри, то в начальный период при снижении дав­ления до значения ри она работает за счет энергии упругости либо за счет энергий упругости и напора вод.

4 Газонапорный режим

Газонапорный режим (режим газовой шапки) связан с преиму­щественным проявлением энергии расширения сжатого свобод­ного газа газовой шапки. Под газовой шапкой понимают скоп­ление свободного газа над нефтяной залежью, тогда саму за­лежь называют нефтегазовой (или нефтегазоконденсатной). В зависимости от состояния давления в газовой шапке разли­чают газонапорный режим двух видов: упругий и жесткий.

При упругом газонапорном режиме в результате некоторого снижения давления на газонефтяном контакте (ГНК) вслед­ствие отбора нефти начинается расширение объема свободного газа газовой шапки и вытеснение им нефти. По мере отбора нефти из залежи давление газа уменьшается.

Жесткий газонапорный режим отличается от упругого тем, что давление в газовой шапке в процессе отбора нефти остается постоянным. Такой режим в чистом виде возможен только при непрерывной закачке в газовую шапку достаточного количества газа или же в случае значительного превышения запасов газа над запасами нефти (в объемных единицах при пластовых усло­виях), когда давление в газовой шапке уменьшается незначи­тельно по мере отбора нефти.

В условиях проявления газонапорного режима начальное давление рпл (на уровне ГНК) равно давлению рн. Поэтому при создании депрессии давления происходит выделение растворен­ного газа и нефть движется по пласту за счет энергии его рас­ширения. Часть газа сегрегирует в повышенные зоны и попол­няет газовую шапку. Это способствует замедлению темпов сни­жения пластового давления, а также обусловливает малое значение газового фактора для скважин, удаленных от ГНК. Скважины, расположенные вблизи ГНК, характеризуются очень высоким значением газового фактора вследствие прорывов газа.

5 Гравитационный режим

Гравитационный режим начинает проявляться тогда, когда дей­ствует только потенциальная энергия напора нефти (гравита­ционные силы), а остальные энергии истощились. Выделяют такие его разновидности:

1)       гравитационный режим с перемещающимся контуром нефтеносности (напорно-гравитационный), при котором нефть под действием собственного веса перемещается вниз по паде­нию крутозалегающего пласта и заполняет его пониженные ча­сти; дебиты скважин небольшие и постоянные;

2)       гравитационный режим с неподвижным контуром нефте­носности (со свободной поверхностью), при котором уровень нефти находится ниже кровли горизонтально залегающего пла­ста; дебиты скважин меньше дебитов при напорно-гравитацион­ном режиме и со временем медленно уменьшаются.

6 Смешанные режимы

Режим, при котором возможно одновременное проявление энер­гий растворенного газа, упругости и напора воды, называют сме­шанным. Его рассматривают зачастую как вытеснение гази­рованной нефти (смеси нефти и свободного газа) водой при сни­жении рз ниже рн. Давление на контуре нефтеносности может равняться рн или быть выше его. Такой режим протекает в не­сколько фаз: сначала проявляется энергия упругости нефти и породы, затем подключается энергия расширения растворенного газа и дальше — энергия упругости и напора водонапорной об­ласти. К такому сложному режиму относят также сочетание газо- и водонапорного режимов (газоводонапорный режим), ко­торое иногда наблюдается в нефтегазовых залежах с водона­порной областью. Особенность такого режима — двухстороннее течение жидкости: на залежь нефти одновременно наступает ВНК и ГНК, нефтяная залежь потокоразделяющей поверх­ностью (плоскостью; на карте линией) условно делится на зону, разрабатываемую при газонапорном режиме, и зону, разраба­тываемую при водонапорном режиме.










Последнее изменение этой страницы: 2018-05-31; просмотров: 182.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...