Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Жесткость воды и способы ее устранения




 

Так как кальций широко распространен в природе, его соли в большом количестве содержатся в природных водах. Вода, имеющая в своем составе соли магния и кальция, называется жесткой водой . Если соли присутствуют в воде в небольших количествах или отсутствуют, то вода называется мягкой . В жесткой воде мыло плохо пенится, поскольку соли кальция и магния образуют с ним нерастворимые соединения. В ней плохо развариваются пищевые продукты. При кипячении на стенках паровых котлов образуется накипь, которая плохо проводит теп-лоту, вызывает увеличение расхода топлива и изнашивание стенок котла. Жесткой водой нельзя пользоваться, проводя ряд технологических процессов (крашение). Образование накипи: Са + 2НСО3 = Н2О + СО2 + СаСО3?.

Перечисленные выше факторы указывают на необходимость удаления из воды солей кальция и магния. Процесс удаления этих солей называется водоумягчением , является одной из фаз обработки воды (водоподготовки).

Водоподготовка – обработка воды, используемая для различных бытовых и технологических процессов.

Жесткость воды подразделяется на:

1) карбонатную жесткость (временную), которая вызывается наличием гидрокарбонатов кальция и магния и устраняется с помощью кипячения;

2) некарбонатную жесткость (постоянную), которая вызывается присутствием в воде сульфитов и хлоридов кальция и магния, которые при кипячении не удаляются, поэтому она называется постоянной жесткостью.

Верна формула: Общая жесткость = Карбонатная жесткость + Некарбонатная жесткость.

Общую жесткость ликвидируют добавлением химических веществ или при помощи катиони-тов. Для полного устранения жесткости воду иной раз перегоняют.

При применении химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты:

 

Более модернизированный процесс устранения жесткости воды – при помощи катионитов .

Катиониты – сложные вещества (природные соединения кремния и алюминия, высокомолекулярные органические соединения), общая формула которых – Na2R, где R – сложный кислотный остаток.

При пропускании воды через слой катионита происходит обмен ионов (катионов) Na на ионы Са и Mg: Са + Na2R = 2Na + CaR.

Ионы Са из раствора переходят в катионит, а ионы Na переходят из катионита в раствор. Чтобы восстановить использованный катионит, его необходимо промыть раствором поваренной соли. При этом происходит обратный процесс: 2Na + 2Cl + CaR = Na2R + Ca + 2Cl.

 

 

Общая характеристика подгруппы бора

 

Внешняя электронная конфигурация у всех элементов подгруппы – s2p1. Характерным свойством подгруппы IIIA является полное отсутствие металлических свойств у бора и типичные металлические свойства у таллия. Элементы, стоящие между ними в подгруппе, проявляют промежуточные свойства.

Получение . Наиболее важным является алюминий . Проявляет характерные свойства металла – отражательная способность, проводимость, прочность, деформируемость. Алюминий образует ион в степени окисления +3, гидроксид проявляет свойства кислоты и основания (амфотерность). Алюминий получают из природного минерала боксита (Al2O3), подвергаемого обогащению или очистке. Полученный оксид добавляют к расплаву криолита Na3AlF6 в электролизной стальной ванне (катод), футерованной графитом. Анод-стержни из углерода. По этой технологии (процесс Холла—Эру ) получают алюминий чистотой 98 % . Дальнейшую очистку проводят электролизом методом Хупса.

Бор в виде аморфного коричневатого порошка получают восстановлением B2O3 активным металлом (щелочным или магнием). При получении загрязняется примесями боридов, например Mg3B2. Более чистый бор получают восстановлением из BBr3. Другие элементы этой подгруппы получают восстановлением их из оксидов.

Химические свойства:

1) элементы подгруппы IIIA образуют оксиды и гидроксиды со степенью окисления III. Свойства их в ряду от алюминия до таллия изменяются от кислотных к основным;

2) галогениды всех элементов этой подгруппы имеют состав MеX3, а таллий, кроме того, образует TlCl, во многом сходный с AgCl;

3) элементы и их соединения взаимодействуют с водой;

4) гидроксиды элементов подгруппы IIIA все, кроме таллия, взаимодействуют со щелочами.

Применение. Бор используют как добавку к цветным сплавам и стали, как противокоррозийное средство, получают из него буру, используемую в производстве глазури, эмали, стекла, сварке, паянии, как удобрение.

Галогениды элементов подгруппы IIIA применяются в отраслях промышленности и в лабораторных исследованиях. На основе алюминия производят множество сплавов. Применяют при изготовлении химической аппаратуры, проводов, конденсаторов, для алитирования, для получения искусственных рубинов, сапфиров и наждака.

Галлий используют для наполнения кварцевых термометров, добавляют к алюминию для получения сплавов, поддающихся горячей обработке. Индий используют для покрытия рефлекторов, вкладышей подшипников и для изготовления плавких предохранителей. Таллий используется в оптических приборах, работающих в оптической области спектра, в фотоэлементах.

 

 

Алюминий. Применение алюминия и его сплавов

 

Алюминий расположен в 3-й группе главной подгруппы, в 3 периоде. Порядковый номер 13. Атомная масса ~27. Р-элемент. Электронная конфигурация: 1s22s22p63s23p1. На внешнем уровне 3s23p1 находятся 3 валентных электрона. Степень окисления +3, валентность – III.

Физические свойства: алюминий – металл серебристо-белого цвета, мягкий, механически прочный, тепло– и электропроводный, легко вытягивается в проволоку, прокатывается в тонкую фольгу, легко образует сплавы.

Химические свойства:

1) при обычной температуре реагирует с кислородом, образую окисную пленку, препятствуя дальнейшему окислению металла: 4Аl + 3О2 = 2Аl2О3;

2) алюминий, лишенный защитной оксидной пленки, взаимодействует с водой: 2Аl + 6Н2О = 2Аl(ОН)3? + 3Н2?;

3) алюминий энергично взаимодействует с растворами щелочей:

 

4) при нагревании алюминий взаимодействует с галогенами, с азотом, с углеродом, с серой, а также с аммиаком:

 

Получение. В промышленности алюминий получают электролизом раствора Аl2О3 в расплавленном криолите Na3AlF6 с добавлением СаF2. Алюминий выделяется на катоде.

Нахождение в природе: алюминий – один из наиболее распространенных элементов в земной коре – до 250 руд, содержащих алюминий: боксит – Аl2О3?хH2O – содержит от 32–60 % Аl2О3 (глинозема); корунд – Аl2О3 – кристаллическая модификация глинозема; рубин и сапфир – драгоценные камни; нефелин – (К, Na)2О?Аl2О3?2SiО2 – одна из важнейших алюминиевых руд; каолин – Аl2О3?2SiО2?2H2O – составляет основу всех глин; алунит – К2SO4?Аl2(SO4)3?2Аl2О3?6H2O – относятся к важнейшим алюминиевым рудам; криолит Na3[AlF6]; шпинель Мg(АlО2)2 и метаалюминаты типа шпинели Zn(АlО2)2. Сплавы алюминия: дюралюминий – 94 % Аl, 4 % Сu, по 0,5 % Мg, Мn, Fe и Si; силумин – Аl + ~13 % Si; магналий – Аl с содержанием Мg – 0,5—11,5 %.

Применение алюминия и его соединений и сплавов: алюминий и его соединения применяется в быту и во всех отраслях народного хозяйства: в машиностроении, автостроении, в химической промышленности (для производства и транспортировки холодной концентрированной HNO3, т. к. алюминий в ней пассивируется). При помощи алюмотерапии производят сварку рельсов, проводят сварочные работы под водой. Чистым алюминием покрывают бензобаки, что способствует предохранению бензина от теплового излучения.

 

 

Оксид и гидроксид алюминия

 

Оксид алюминия – Al2O3. Физические свойства: оксид алюминия – белый аморфный порошок или очень твердые белые кристаллы. Молекулярная масса = 101,96, плотность – 3,97 г/см3, температура плавления – 2053 °C, температура кипения – 3000 °C.

Химические свойства: оксид алюминия проявляет амфотерные свойства – свойства кислотных оксидов и основных оксидов и реагирует и с кислотами, и с основаниями. Кристаллический Аl2О3 химически пассивен, аморфный – более активен. Взаимодействие с растворами кислот дает средние соли алюминия, а с растворами оснований – комплексные соли – гидроксоалюминаты металлов:

 

При сплавлении оксида алюминия с твердыми щелочами металлов образуются двойные соли – метаалюминаты (безводные алюминаты):

 

Оксид алюминия не взаимодействует с водой и не растворяется в ней.

Получение: оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома, молибдена, вольфрама, ванадия и др. – металлотермия , открытый Бекетовым :

 

Применение: оксид алюминия применяется для производства алюминия, в виде порошка – для огнеупорных, химически стойких и аб-разивных материалов, в виде кристаллов – для изготовления лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов – Сr2О3 (красный цвет), Тi2О3 и Fe2О3 (голубой цвет).

Гидроксид алюминия – А1(ОН)3 . Физические свойства: гидроксид алюминия – белый аморфный (гелеобразный) или кристаллический. Почти не растворим в воде; молекулярная масса – 78,00, плотность – 3,97 г/см3.

Химические свойства: типичный амфотерный гидроксид реагирует:

1) с кислотами, образуя средние соли: Al(ОН)3 + 3НNO3 = Al(NO3)3 + 3Н2О;

2) с растворами щелочей, образуя комплексные соли – гидроксоалюминаты: Al(ОН)3 + КОН + 2Н2О = К[Al(ОН)4(Н2О)2].

При сплавлении Al(ОН)3 с сухими щелочами образуются метаалюминаты: Al(ОН)3 + КОН = КAlO2 + 2Н2О.

Получение:

1) из солей алюминия под действием раствора щелочей: AlСl3 + 3NaOH = Al(ОН)3 + 3Н2О;

2) разложением нитрида алюминия водой: AlN + 3Н2О = Аl(ОН)3 + NН3?;

3) пропусканием СО2 через раствор гидроксокомплекса: [Аl(ОН)4]-+ СО2 = Аl(ОН)3 + НСО3-;

4) действием на соли Аl гидратом аммиака; при комнатной температуре образуется Аl(ОН)3.

 

 










Последнее изменение этой страницы: 2018-05-31; просмотров: 208.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...