Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Клонирование и его возможности: вымысел и реальность.




Содержание.

Введение

История развития биотехнологии

Эмпирический период

    1. Этиологический период
    2. Биотехнический период
    3. Геннотехническийпериод
  1. Основные направления развития биотехнологий
    1. Медицинские биотехнологии.
    2. Агробиотехнологии
    3. Экологические биотехнологии
    4. Генная инженерия
  2. Рынок биотехнологий в мире
  3. Заключение

Литература

Введение.

Удивительными открытиями в науке и грандиозным научно-техническим прогрессом ознаменовался XX век, однако научно-технический прогресс в настоящем виде имеет негативные стороны: исчерпание ископаемых ресурсов, загрязнение окружающей среды, исчезновение многих видов растений и животных, глобальное изменение климата, появление озоновых дыр над полюсами Земли и т.д. Ясно, что такой путь ведёт в тупик. Нужно принципиальное изменение вектора развития. Биотехнология может внести решающий вклад в решение глобальных проблем человечества. В широком смысле «биотехнология» - использование живых организмов и биологических процессов, а также способов их изменения для более полного удовлетворения человеческих потребностей.
Биотехнологии основаны на последних достижениях многих отраслей современной науки: биохимии и биофизики, вирусологии, физико-химии ферментов, микробиологии, молекулярной биологии, генетической инженерии, селекционной генетики, химии антибиотиков, иммунологии и др. 1

В данном реферате мы рассмотрим историю возникновения, основные направления развития современных биотехнологий и рынок биотехнологий в современном мире.

  1. История развития биотехнологии

За последние 20 лет биотехнология, благодаря своим специфичес­ким преимуществам перед другими науками, совершила решитель­ный прорыв на промышленный уровень. Этим она в немалой степени обя­зана также развитию новых методов исследований и интенсифика­ции процессов, открывших ранее неизвестные возможности в полу­чении биопрепаратов, способов выделения, идентификации и очист­ки биологически активных веществ.

Биотехнология формировалась и эволюционировала по мере фор­мирования и развития человеческого общества. Ее возникновение, становление и развитие условно можно подразделить на 4 периода.3

1.1. Эмпирический период или до­исторический - самый длительный, охватывающий примерно 8000 лет, из которых более 6000 лет до н.э. и около 2000 лет н.э. Древние народы того времени интуитивно использовали приемы и способы изготовления хлеба, пива и некоторых других продуктов, которые теперь мы относим к разряду биотехнологических.

Известно, что шумеры - первые жители Месопотамии (на терри­тории современного Ирака) создали цветущую в те времена цивили­зацию. Они выпекали хлеб из кислого теста, владели искусством го­товить пиво. Приобретенный опыт передавался из поколения в поко­ление, распространялся среди соседних народов (ассирийцев, вави­лонян, египтян и древние индусов). В течение нескольких тысячеле­тий известен уксус, издревле приготавливавшийся в домашних усло­виях. Первая дистилляция в виноделии осуществлена в XII в.; водку из хлебных злаков впервые получили в XVI в.; шампанское известно с XVIII в.

К эмпирическому периоду относятся получение кисломолочных продуктов, квашеной капусты, медовых алкогольных напитков, си­лосование кормов.

Таким образом, народы исстари пользовались на практике био­технологическими процессами, ничего не зная о микроорганизмах. Эмпиризм также был характерен и в практике использования полез­ных растений и животных.

В 1796 г. произошло важнейшее событие в биологии - Э. Дженнером были проведены первые в истории прививки человеку коровьей оспы.

1.2. Этиологический период в развитии биотехнологии охватывает вторую половину XIX в. и первую треть XX в. (1856 - 1933 гг.). Он связан с выдающимися исследованиями великого французского ученого Л. Пастера (1822 - 95) - основопо­ложника научной микробиологии.

В 1859г. Л. Пастер приготовил жидкую питательную среду, Р. Кох в 1881г. предложил метод культивирования бактерий на стерильных ломтиках картофеля и на агаризованных питательных средах. И, как следствие этого, удалось доказать индивидуальность микробов и получить их в чистых культурах. Более того, каждый вид мог быть размножен на питательных средах и использован в целях воспроиз­ведения соответствующих процессов (бродильных, окислительных и др.).

Среди достижений 2-й периода особо стоит отметить следующие:

1856г. - чешский монах Г. Мендель открыл законы доминирова­ния признаков и ввел понятие единицы наследственности в виде дис­кретного фактора, который передается от родителей потомкам;

1869г. - Ф. Милер выделил «нуклеин» (ДНК) из лейкоцитов;

1883г. - И. Мечников разработал теорию клеточного иммунитета;

1984г. - Ф. Леффлер изолировал и культивировал возбудителя дифтерии;

1892г. - Д.Ивановский открыл вирусы;

1893г. - В. Оствальд установил каталитическую функцию ферментов;

1902г. - Г. Хаберланд показал возможность культивирования кле­ток растений в питательных растворах;

1912г. - Ц. Нейберг раскрыл механизм процессов брожения;

-1913г. - Л. Михаэлис и М. Ментен разработали кинетику фермен­тативных реакций;

1926г. - X. Морган сформулировал хромосомную теорию наслед­ственности;

1.3. Биотехнический период - начался в 1933 г. и длился до 1972 г.

В 1933 г. А. Клюйвер и А.Х. Перкин опубликовали работу «Мето­ды изучения обмена веществ у плесневых грибов», в которой изло­жили основные технические приемы, а также подходы к оценке по­лучаемых результатов при глубинном культивировании грибов. Началось внедрение в биотехнологию крупномасштабного герметизи­рованного оборудования, обеспечивающего проведение процессов в стерильных условиях.

Все прогрессивное в области биотехнологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии:

1936г. - были решены основные задачи по конструированию, со­зданию и внедрению в практику необходимого оборудования, в том числе главного из них - биореактора (ферментера, аппарата-культи­ватора);

1938г. - А. Тизелиус разработал теорию электрофореза;

1942г. - М. Дельбрюк и Т. Андерсон впервые увидели вирусы с помощью электронного микроскопа;

1943г. - пенициллин произведен в промышленных масштабах;

1949г. - Дж. Ледерберг открыл процесс конъюгации у Е.colly;

1950г. - Ж. Моно разработал теоретические основы непрерывно­го управляемого культивирования микробов, которые развили в сво­их исследованиях М. Стефенсон, И. Молек, М. Иерусалимский,
И. Работнова, И. Помозгова, И. Баснакьян, В. Бирюков;

1951г. - М. Тейлер разработал вакцину против желтой лихорадки;

1952г. - У. Хейс описал плазмиду как внехромосомный фактор наследственности;

1953г. - Ф. Крик и Дж. Уотсон расшифровали структуру ДНК. Это стало побудительным мотивом для разработки способов крупномас­штабного культивирования клеток различного происхождения для получения клеточных продуктов и самих клеток;

1959г.- японские ученые открыли плазмидыантибиотикоустойчивости (К-фактор) у дизентерийной бактерии;

1960г. - С. Очоа и А. Корнберг выделили белки, которые могут «сшивать» или «склеивать» нуклеотиды в полимерные цепочки, син­тезируя тем самым макромолекулы ДНК. Один из таких ферментов был выделен из кишечной палочки и назван ДНК-полимераза;

1961г. - М. Ниренберг прочитал первые три буквы генетического
кода для аминокислоты фенилаланина;

1962г. - X. Корана синтезировал химическим способом функцио­нальный ген;

1969г. - М. Беквит и С. Шапиро выделили ген 1ас-оперона у Е.colly;

1970г. - выделен фермент рестриктаза (рестриктирующаяэндонуклеаза).

1.4. Геннотехнический период начался с 1972 г., когда П. Берг создал первую рекомбинацию молекулы ДНК, тем самым показав возмож­ность направленных манипуляцией с генетическим материалом бак­терий.

Естественно, что без фундаментальной работы Ф. Крика и Дж. Уотсона по установлению структуры ДНК было бы невозможно дос­тигнуть современных результатов в области биотехнологии. Выяс­нение механизмов функционирования и репликации ДНК, выделе­ние и изучение специфичных ферментов привело к формированию строго научного подхода к разработке биотехнических процессов на основе генноинженерных манипуляций.

Создание новых методов исследований явилось необходимой пред­посылкой развития биотехнологии в 4-ом периоде:

1975г. - Г. Келлер и Ц. Мильштейн опубликовали в журнале «Ка1иге» статью «Длительноживущие культуры гибридных клеток, секретирующие антитела предопределенной «специфичности», в которой описали метод получения моноклональных антител;

1977г. - М. Максам и У. Гилберт разработали метод анализа пер­вичной структуры ДНК путем химической деградации, а Дж. Сэнгер
- путем полимеразного копирования с использованием терминиру­ющих аналогов нуклеотидов;

1981г. - разрешен к применению в США первый диагностичес­кий набор моноклональных антител;

1986г. - К. Мюллис разработал метод полимеразной цепной реак­ции (ПЦР);

1988г. - началось широкомасштабное производство оборудова­ния и диагностических наборов для ПЦР;

1997г. - клонировано первое млекопитающее (овечка Долли) из дифференцированной соматической клетки.

Такие выдающиеся отечественные ученые как Л.С. Ценковский, С.Н. Вышелесский, М.В. Лихачев, Н.Н. Гинзбург, С.Г. Колесов, Я.Р. Коляков, Р.В. Петров, В.В. Кафаров и др. внесли неоценимый вклад в развитие биотехнологии.

Наиболее важные достижения биотехнологии в 4-ом периоде:

Разработка интенсивных процессов (вместо экстенсивных) на основе направленных, фундаментальных исследований (с продуцен­тами антибиотиков, ферментов, аминокислот, витаминов).

2. Основные направления биотехнологий.

Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, агробиотехнологии и экологические биотехнологии. Новейшим и важнейшим ответвлением биотехнологии является генная инженерия.

1. Медицинские биотехнологии.

Медицинские биотехнологии подразделяются на диагностические и лечебные. Диагностические медицинские биотехнологии в свою очередь разделяют нахимические (определение диагностических веществ и параметров их обмена) и физические (определение особенностей физических процессов организма).

Химические диагностические биотехнологии используются в медицине давно. Но если раньше они сводились к определению в тканях и органах веществ, имеющих диагностическое значение (статический подход), то сейчас развивается и динамический подход, позволяющий определять скорости образования и распада представляющих интерес веществ, активность ферментов, осуществляющих синтез или деградацию этих веществ, и др. Кроме того, современная диагностика разрабатывает методы функционального подхода, с помощью которого можно оценивать влияние функциональных воздействий на изменение диагностических веществ, а следовательно, выявлять резервные возможности организма.

Биотехнологии помогают в борьбе современной медицины с сердечно-сосудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями как патологическим нарушением иммунитета (способность организма защищать свою целостность и биологическую индивидуальность), старением и вирусными инфекциями (в том числе со СПИДом). Так, развитие иммунологии (науки, изучающей защитные свойства организма) способствует лечению аллергии. При аллергии организм отвечает на воздействие некоторого специфического аллергена чрезмерной реакцией, повреждающей его собственные клетки и ткани в результате отека, воспаления, спазма, нарушений микроциркуляции, гемодинамики и др. Иммунология, изучая клетки, осуществляющие иммунный ответ (иммуноциты), позволяет создавать новые подходы к лечению иммунологических, онкологических и инфекционных заболеваний.

2. Агробиотехнологии.

Сельскохозяйственные

В XX в. произошла «зеленая революция» — за счет использования минеральных удобрений, пестицидов и инсектицидов удалось добиться резкого повышения продуктивности растениеводства. Но сейчас понятны и ее отрицательные последствия, например насыщение продуктов питания нитратами и ядохимикатами. Основная задача современных агробиотехнологий — преодоление отрицательных последствий «зеленой революции», микробиологический синтез средств защиты растений, производства кормов и ферментов для кормопроизводства и др. При этом упор делается на биологические методы восстановления плодородия почвы, биологические методы борьбы с вредителями сельскохозяйственных культур, на переход от монокультур к поликультурам (что повышает выход биомассы с единицы площади сельхозугодий), выведение новых высокопродуктивных и обладающих другими полезными свойствами (например, засухоустойчивостью или устойчивостью к засолению) сортов культурных растений.

3. Экологические биотехнологии.

Биотехнологии выступают одним из важнейших способов решения экологических проблем. Они применяются для уничтожения загрязнений окружающей среды (например, очистка воды или очистка от нефтяных загрязнений), для восстановления разрушенных биоценозов (тропических лесов, северной тундры), восстановления популяций исчезающих видов или акклиматизации растений и животных в новых местах обитания.

Так, с помощью биотехнологий решается проблема освоения загрязненных территорий устойчивыми к этим загрязнениям видами растений. Например, зимой в городах для борьбы со снежными заносами используются минеральные соли, от которых гибнут многие виды растений. Однако некоторые растения устойчивы к засолению, способны поглощать цинк, кобальт, кадмий, никель и другие металлы из загрязненных почв; конечно, они предпочтительнее в условиях больших городов. Выведение сортов растений с новыми свойствами — одно из направлений экологической биотехнологии.

4. Генная инженерия.

Генная инженерия возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-лигазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое. Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур — рекомбинантных ДНК(молекул ДНК, которые получаются в результате ковалентного объединения вектора и чужеродного фрагмента ДНК). Рекомбинантная молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов — белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК.





Клонирование и его возможности: вымысел и реальность.

В последнее время в средствах массовой информации распространяется много предсказаний, пожеланий, догадок и фантазий о клонировании живых организмов. Особую остроту этим дискуссиям придает обсуждение возможности клонирования человека. Вызывают интерес технологические, этические, философские, юридические, религиозные, психологические аспекты этой проблемы; последствия, которые могут возникнуть при реализации такого способа воспроизводства человека. Как нередко бывает в подобных случаях, стремление к сенсации нередко затемняет сущность проблемы, особенно когда высказываются неспециалисты. И в то же время ее серьезность не вызывает сомнений, поэтому рассмотрим ее детальнее.

Клон — совокупность клеток или организмов, генетически идентичных одной родоначальной клетке. Клонирование — метод создания клонов путем переноса генетического материала из одной (донорской) клетки в другую клетку (энуклеированную яйцеклетку)8. При этом следует различать перенос ядра эмбриональной клетки и перенос ядра соматической клетки взрослого организма.

В XX в. было проведено немало удачных экспериментов по клонированию животных (амфибий, некоторых видов млекопитающих), но все они были выполнены с помощью переноса ядер эмбриональных (недифференцированных или частично дифференцированных) клеток. При этом считалось, что получить клон с использованием ядра соматической (полностью дифференцированной) клетки взрослого организма невозможно. Однако в 1997 г. британские ученые объявили об успешном сенсационном эксперименте: получении живого потомства (овечка Долли) после переноса ядра, взятого из соматической клетки взрослого животного (донорской клетке более 8 лет). Недавно в США (универсистет в Гонолулу) были проведены успешные эксперименты по клонированию на мышах. Таким образом, современная биология доказала, что получение клонов млекопитающих принципиально возможно.

Во-первых, длительность жизни клонированного организма не будет равна времени жизни нормального организма, сформировавшегося из половых клеток, а в любом случае меньше ее (с учетом возраста донорского организма); так, овечка Долли умерла в 2003 г., прожив чуть более 5 лет, тогда как «естественные» овцы живут 14—15 лет. Ведь хромосомы соматической клетки значительно короче по сравнению с хромосомами половых (зародышевых) клеток.

Во-вторых, клонированный организм будет нести на себе груз генетических мутаций донорской клетки, а значит, ее болезни, признаки старения и т.п. Следовательно, онтогенез клонов не идентичен онтогенезу их родителей: клоны проходят другой, сокращенный и насыщенный болезнями жизненный путь. Можно утверждать, что клонирование не несет омоложения, возврата молодости, бессмертия. Таким образом, метод клонирования нельзя считать абсолютно безопасным для человека.

В-третьих, клонирование не есть копирование. Клон не является точной копией клонированного животного. Значит, человеческие клоны никогда не будут идентичны своим родителям, не говоря уже об их различном жизненном и социально-культурном опыте.

3. Рынок биотехнологий в мире

Объем рынка биотехнологий в мире в 2005 году оценивался примерно в 200 млрд. долларов США. Ежегодный рост составляет около 7-9%.

2005 год для рынка биотехнологий в мире можно охарактеризовать как один из самых успешных за всю историю развития этой отрасли. По-прежнему, мировым лидером остаются США. Общий объем инвестиций в биотехнологические компании США составил в 2005 г около 20 млрд. долларов.

Около 75% объема инвестиций было получено за счет продажи акций биотехнологических компаний на бирже, оставшиеся 25% пришлись на вложения венчурных фондов и других частных инвесторов. Всего на IPO свои акции в 2005 году разместили 30 биотехнологических компаний. К сожалению, пока почти единственными биотехнологическими компаниями, которым доступно привлечение средств путем выхода на IPO, являются американские компании. Ситуация постепенно меняется, но в основном эти сделки носят разовый характер. При этом инвесторы предъявляют повышенные требования по срокам реализации проекта и получения прибыли.

Заключение.

В современном мире биотехнология прочно заняла ведущую роль в развитии научно-технического прогресса. Мировой рынок биотехнологической продукции ежегодно увеличивается на 7 %.

Закономерно, что биотехнология включена в число приоритетных национальных Программ исследований и развития ведущих индустриальных стран. За биотехнологией будущее человечества в решении проблемы материальных ресурсов, обеспечения энергией, охраны окружающей среды и здоровья людей.

Будущее планеты во многом зависит от уровня и темпов развития фундаментальных и прикладных научных разработок, в том числе в области биотехнологии.

Литература:

1. ''Биотехнология проблемы и перспективы'' – Егоров Н.С., Москва, «Высшая школа» 1987г.

2. ''Биотехнология: что это такое?'' Вакула В.Л., Москва, «Молодая гвардия» 1989г.

3. Найдыш В.М. Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — 622 с. (в пер.)

4. Сассон А. Биотехнология: свершения и надежды. М., 1987.

5. Этико-правовые аспекты проекта "Геном человека" (международные документы и аналитические материалы). Иванов В.И. (Сост.), Юдин Б.Г. (Сост.) , Москва, издательство РНКБ РАН, 1998г.

6. http://www.vechnayamolodost.ru/rinok_biotehnologiy_v_mire.html

Северо-Казахстанский Госдарственный Университет им. Манаша Козыбаева

 

 

  Реферат

На тему “Биотехнология”

 

 

Выполнила: Сайлау С.С.

                                                                                        А-17К

                                                                                       Проверила: Леонтьева А.Ю.

 

                                               Петропавловск, 2018г

 










Последнее изменение этой страницы: 2018-05-31; просмотров: 254.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...