Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Свойства и классификация процессов.




Понятие операционной системы. Место ОС в программном обеспечении вычислительной системы.

Операционная система (ОС) - комплекс системных и управляющих программ,

предназначенных для наиболее эффективного использования всех ресурсов вычислительной

системы (ВС) (Вычислительная система - взаимосвязанная совокупность аппаратных средств

вычислительной техники и программного обеспечения, предназначенная для обработки

информации) и удобства работы с ней.

Назначение ОС - организация вычислительного процесса в вычислительной системе,

рациональное распределение вычислительных ресурсов между отдельными решаемыми задачами; предоставление пользователям многочисленных сервисных средств, облегчающих процесс программирования и отладки задач. Операционная система исполняет роль своеобразного интерфейса ( Интерфейс - совокупность аппаратуры и программных средств, необходимых для подключения периферийных устройств к ПЭВМ) между пользователем и ВС, т.е. ОС предоставляет пользователю виртуальную ВС. Это означает, что ОС в значительной степени формирует у пользователя представление о возможностях ВС, удобстве работы с ней, ее пропускной способности. Различные ОС на одних и тех же технических средствах могут предоставить пользователю различные возможности для организации вычислительного процесса или автоматизированной обработки данных.
В программном обеспечении ВС операционная система занимает основное положение, поскольку осуществляет планирование и контроль всего вычислительного процесса. Любая из компонент программного обеспечения обязательно работает под управлением ОС.

 


Концептуальные основы ОС.

 

концептуальные основы ОС – ресурс, процесс, функциональные компо-

ненты ОС; концепции прерывания и виртуализации; дисциплины распределе-

ния ресурсов; средства взаимодействия пользователя с системой; требования,

предъявляемые к современным ОС и тенденции их развития;

 

Концепция процесса

Процесс - это система действий, реализующая определенную функцию в вычислительной системе и оформленная так, что управляющая программа вычислительной системы может перераспределять ресурсы этой системы в целях обеспечения мультипрограммирования.

Понятие процесса тесно связано с понятием задача:

Задача - в режиме мультипрограммирования или мультипроцессорной обработки одна или более последовательностей команд, обрабатываемых управляющей программой как элемент работы, которая выполняется вычислительной машиной.

Выполнение задачи реализуется в вычислительной системе запуском не менее одного процесса. Можно говорить, что задача - это один или несколько процессов, обеспечивающих достижение поставленных пользователем целей.

Следует отличать понятия процесс и задача от понятий программа изадание.

Программа (для ЭВМ) - упорядоченная последовательность команд, подлежащих обработке.

Задание (вычислительной системе) - единица работы, возлагаемой на вычислительную систему пользователем, оформленная для ввода в вычислительную систему независимо от других таких же единиц.

Отношение программы и задания аналогично отношению процесса и задачи, т.е. каждое задание содержит не менее одной программы, предназначенной для обработки в ЭВМ.

Об отношении процесса и программы можно сказать, что процесс - это программа во время ее выполнения. Всякая программа становится процессом, когда начинает выполняться в ЭВМ.

В период своего существования процесс может находиться в одном из следующих основных состояний (рис.2.1):

· порождение, во время которого подготавливаются условия для первого исполнения на центральном процессоре;

· активное состояние (выполнение), когда процессу принадлежит центральный процессор;

· ожидание, во время которого процесс блокирован по причине занятости каких-либо необходимых ему ресурсов;

· готовность, при котором процесс получил все необходимые ему ресурсы, кроме центрального процессора;

· окончание, во время которого выполняются завершающие работу операции, после чего ресурсы процессу больше не предоставляются.

Концепция ресурса

Одной из важнейших задач, решаемых современными ОС, является обеспечение эффективного и бесконфликтного распределения ресурсов вычислительной системы между процессами.

Ресурс вычислительной системы - средство вычислительной системы, которое может быть выделено процессу обработки данных на определенный интервал времени.

Основными ресурсами вычислительной системы являются: процессоры; области основной памяти; наборы данных; периферийные устройства; программы.

Концепция виртуальности

Виртуальность в операционных системах, впрочем, как и в других предметных областях, основана на том, что потребитель (в ОС - процесс) взаимодействует с необходимым ему ресурсом не прямо, а опосредованно

Виртуальный ресурс вычислительной системы - это такой ресурс ВС, который реально может либо не существовать в вычислительной системе, либо существовать с худшими, чем необходимо процессу обработки данных, свойствами и формируемый управляющей программой ВС в виде модели ресурса с требуемыми потребительскими свойствами с использованием реально существующих ресурсов вычислительной системы.

Наиболее законченным и естественным проявлением концепции виртуальности является понятие виртуальной машины. Любая операционная система, будучи посредником между пользователем и аппаратной частью вычислительной системы, создает у пользователя определенной представление о вычислительной системе и ее ресурсах, т.е. формирует у пользователя видимость виртуальной машины. Восприятие характеристик виртуальной машины различными пользователями неоднозначно. Чаще всего виртуальная машина, предоставляемая пользователю, воспроизводит архитектуру реальной машины, однако архитектурные элементы этого представления выступают с новыми, зачастую улучшенными, качествами.

Концепция прерывания

Реализация мультипрограммного режима работы вычислительных систем возможна только на применении концепции прерываний, которая состоит в том, что любой процесс, обслуживаемый операционной системой, может быть прерван процессом, имеющим более высокий приоритет.

Прерывание - временное прекращение процесса, такого как выполнение программы вычислительной машины, вызванное событием, внешним по отношению к этому процессу, и совершенное таким образом, что процесс может быть продолжен (СТ ИСО 2382/10-79).

Приведенное определение исчерпывающе характеризует суть понятия прерывания, оставляя за рамками рассмотрения физическую природу аппаратного средства, где возникает это прерывание. Существует другое определение, в котором конкретизируется устройство, в котором происходит прерывание [1,2]:

Прерывание - операция процессора, состоящее в регистрации состояния процессора, предшествующего прерыванию, и установлении нового состояния.

В вычислительной машине прерывание - это событие, при котором меняется нормальная последовательность команд, выполняемых процессором. Сигнал “прерывание” сначала отрабатывается аппаратурой вычислительной машины - системой прерываний. Если произошло прерывание, то в вычислительной системе выполняются последовательно следующие действия (рис.2.3):

· управление передается операционной системе;

· операционная система запоминает состояние прерванного процесса;

· операционная система анализирует тип прерывания и передает управление соответствующей программе обработки этого прерывания;

· программа обработки прерывания выполняет предписанные действия и передает управление операционной системе;

· операционная система по результатам работы программы обработки прерываний либо восстанавливает состояние прерванного процесса и позволяет развиваться ему дальше, либо аварийно заканчивает его.

 

 

Архитектура ОС.

Перечислим основные типы внутренней архитектуры операционных систем и в качестве примеров рассмотрим архитектуру наиболее распространенных операционных систем – систем UNIX и Windows.

Разливают всего три базовых типа архитектуры операционных систем:
• монолитная архитектура;
• многоуровневая архитектура;
• архитектура типа клиент-сервер на основе микроядра.

Монолитная архитектура операционной системы

При монолитной архитектуре операционная система не имеет какой-либо явно выраженной внутренней структуры. Это просто набор процедур, использующих общие глобальные данные, и вызываемые друг другом или пользователем.
Заметим, что монолитную архитектуру имели самые первые поколения операционных систем.
может наблюдаться эффект снежной лавины – изменение одной процедуры потребовало изменение нескольких других, каждая из которых потребовала изменение еще нескольких других процедур и т.д.
Еще большие неудобства могут доставить глобальные данные, т.к. даже незначительное изменение их формата, необходимое для какой-то частной процедуры, в большинстве случаев потребует коррекции практически всех остальных процедур операционной системы.
Серьезные трудности возникают при сопровождении и технической поддержке операционной системы с монолитной архитектурой, в период ее эксплуатации, особенно если система находится в эксплуатации длительное время, и сопровождение выполняют специалисты, которые не участвовали в разработке этой операционной системы с самого начала проекта.


Многоуровневая архитектура

Многоуровневая архитектура появилась как ответ на ограничения монолитной архитектуры в плане расширяемости, переносимости и совместимости. Основная идея многоуровневой архитектуры состоит в следующем:
1. Полная функциональность операционной системы разделяется на уровни, например уровень управления аппаратурой, уровень управления памятью, уровень файловой системы, уровень управления процессами и т.п.
2. Для каждого уровня определяются интерфейс взаимодействия, т.е. некоторый набор правил, согласно которым следует обращаться за услугами данного уровня.
3. Взаимодействие уровней строится таким образом, что каждый уровень может обращаться за услугами только к соседнему нижележащему уровню через его интерфейс.
4. Внутренние структуры данных каждого уровня не доступны другим уровням, а реализации процедур уровня скрыты и не зависят от реализаций процедур внутри других уровней.


Обязательным условием для разбиения функциональности на уровни является взаимодействие только между соседними уровнями. В многоуровневых системах запрещаются прямые обращения к любым уровням, минуя соседний уровень.

Разбиение функциональности операционной системы на уровни выполняется на этапе ее проектирования и сохраняется на весь срок жизни операционной системы. При этом, по мере развития операционной системы, интерфейсы уровней могут дополняться новыми вызовам. Однако интерфейсы не могут сокращаться, т.к. необходимо обеспечивать совместимость с программами, разработанными для предыдущих версий операционной системы, и использующими старые интерфейсы.
Расширение интерфейса обычно связано с введением в операционную систему новой функциональности, например, при появлении новых аппаратных средств. Другой причиной дополнения интерфейса может стать новая, более оптимальная реализация некоторого алгоритма работы операционной системы, при этом старый интерфейс необходимо сохранить в целях совместимости.
Например, на базе многоуровневой архитектуры построена широко распространенная операционная система UNIX.
Главное преимущество многоуровневой архитектуры перед монолитной архитектурой проявляются не столько на этапе начальной разработки, сколько на этапе сопровождения операционной системы. При использовании многоуровневой архитектуры, для внесения новой функциональности в операционную систему достаточно внести изменения только в код отдельного уровня, при этом все остальные уровни могут быть оставлены без изменений. При переносе операционной системы на другую аппаратную платформу, аппаратно зависимый уровень может быть просто заменен.
По мере развития операционной системы интерфейс уровня становится все более громоздким, а сложность реализации отдельного уровня может превзойти сложность всей операционной системы первых версий. В таких условиях заменить уровень новым или нарастить его функциональность становится весьма сложной задачей.
Интересно отметить, что сам факт фиксированного разделения функциональности на уровни является сдерживающим фактором в развитии операционной системы, так как разделение, сделанное в начале жизненного пути операционной системы, может стать неоптимальным по мере ее развития, но изменять разбиение уже нельзя из соображений совместимости.
Поэтому классическая многоуровневая архитектура в наиболее современных операционных системах вытесняется архитектурой типа клиент-сервер.

 

Архитектура типа клиент-сервер на основе микроядра

Архитектура типа клиент-сервер в настоящее время является наиболее совершенной с точки зрения расширяемости и переносимости операционных систем.
Идея архитектуры клиент-сервер состоит в следующем: все компоненты операционной системы разделяются на программы – поставщики услуг (программы серверы, выполняющие определенные действия по запросам других программ), и программы – потребители услуг (программы клиенты, обращающиеся к серверам для выполнения определенных действий). Заметим здесь, что одна и та же программа может быть одновременно сервером по отношению к одному виду услуг и клиентом по отношению к другому виду услуг.
Запущенные в системе процессы-серверы постоянно находится в состоянии ожидания клиентских запросов. В случае необходимости, клиенты посылают серверам запросы на оказание требуемых им услуг, например запрос на чтение файла, запрос на выделение памяти, запрос на вывод результатов на экран и т.п.
Получив запрос от клиента, сервер выполняет его, при этом он сам может обратиться за услугами к другим серверам. После выполнения запроса сервер отсылает клиенту сообщение о завершении задания и результаты работы.
При этом клиенты и серверы никогда не общаются напрямую. Если некоторый процесс нуждается в каких-либо услугах со стороны операционной системы, то он посылает соответствующее сообщение диспетчеру в составе микроядра операционной сис-темы. Получив запрос, микроядро определяет сервер, который может его обслужить, пробуждает его процесс и переадресовывает ему запрос клиента. Очевидно, что серверы должны быть предварительно зарегистрированы в системе. При этом микроядро само является сервером по отношению к запросам, связанным с управлением аппаратурой. В процессе выполнения запросов от пользовательских программ, системные серверы, выступая в роли клиентов, обращаются за аппаратно-зависимыми услугами к микроядру, при этом сами серверы операционной системы выполняются в режиме задачи, наравне с обычными пользовательскими процессами, и не имеют прямого доступа к аппаратуре.

 

Для архитектуры типа клиент-сервер характерно горизонтальное разделение функциональности между равноправными серверами, вместо вертикального иерархического распределения в многоуровневой архитектуре. При этом, каждый сервер отвечает за выполнение отдельной достаточно простой операции и ни в коей мере не является эквивалентом уровня в многоуровневой архитектуре.
Таким образом, архитектура клиент-сервер обеспечивает следующие основные преимущества:
• переносимость операционной системы, т.к. серверы, работающие в пользовательском режиме, аппаратно независимы;
• расширяемость операционной системы, т.к. новая функциональность может быть легко введена за счет введения нового сервера, и это никак не затронет существующую функциональность;
• гибкость операционной системы, т.к. пользователь может запустить только те сервисы, которые ему действительно нужны, и не расходовать ресурсы системы на поддержку невостребованной функциональности, при этом пользователь может изменять набор запущенных серверов без перезапуска системы.
Указанные преимущества делают архитектуру клиент-сервер наиболее подходящей для построения операционных систем, удовлетворяющих современным требованиям.
К сожалению, архитектура клиент-сервер, наряду с указанными преимуществами, имеет один серьезный недостаток – производительность операционной системы, функционирующей на основе обмена сообщениями между клиентами и серверами через микроядро, заметно ниже производительности операционной системы, функционирование которой основано на простых вызовах функций.
Поэтому идеализированная модель операционной системы на базе архитектуры клиент-сервер, когда ядро операционной системы выполняет только функции диспетчера сообщений и сервера для управления аппаратурой, довольно редко применяется на практике.
В реальных операционных системах, основанных на архитектуре клиент-сервер, ядро обычно выполняет существенно больший объем работы, так, что иногда точнее говорить о гибридной архитектуре, сочетающей многоуровневое ядро и серверы за пределами ядра для выполнения некоторых операций.
Такая организация операционной системы позволяет достичь удачного компромисса гибкость/производительность, и, в конечном итоге, получить производительность, близкую к производительности классической многоуровневой системы в сочетании с максимально простой переносимостью и расширяемостью.

 



































Классификация ОС.

Операционная система составляет основу программного обеспечения ПК. Операционная система представляет комплекс системных и служебных программных средств, который обеспечивает взаимодействие пользователя с компьютером и выполнение всех других программ.

Операционные системы различаются особенностями реализации алгоритмов управления ресурсами компьютера, областями использования.

Так, в зависимости от алгоритма управления процессором, операционные системы делятся на:

 Однозадачные и многозадачные

 Однопользовательские и многопользовательские

 Однопроцессорные и многопроцессорные системы

 Локальные и сетевые.

По числу одновременно выполняемых задач операционные системы делятся на два класса:

 Однозадачные (MS DOS)

 Многозадачные (OS/2, Unix, Windows)

В однозадачных системах используются средства управления периферийными устройствами, средства управления файлами, средства общения с пользователями. Многозадачные ОС используют все средства, которые характерны для однозадачных, и, кроме того, управляют разделением совместно используемых ресурсов: процессор, ОЗУ, файлы и внешние устройства.

В зависимости от областей использования многозадачные ОС подразделяются на три типа:

 Системы пакетной обработки (ОС ЕС)

 Системы с разделением времени (Unix, Linux, Windows)

 Системы реального времени (RT11)

Системы пакетной обработки предназначены для решения задач, которые не требуют

быстрого получения результатов. Главной целью ОС пакетной обработки является

максимальная пропускная способность или решение максимального числа задач в единицу

времени.

 

Эти системы обеспечивают высокую производительность при обработке больших объемов

информации, но снижают эффективность работы пользователя в интерактивном режиме.

 

В системах с разделением времени для выполнения каждой задачи выделяется небольшой

промежуток времени, и ни одна задача не занимает процессор надолго. Если этот

промежуток времени выбран минимальным, то создается видимость одновременного

выполнения нескольких задач. Эти системы обладают меньшей пропускной способностью,

но обеспечивают высокую эффективность работы пользователя в интерактивном режиме.

 

Системы реального времени применяются для управления технологическим процессом или

техническим объектом, например, летательным объектом, станком и т.д.

По числу одновременно работающих пользователей на ЭВМ ОС разделяются на

однопользовательские (MS DOS) и многопользовательские (Unix, Linux, Windows 95 - XP)
     

 В многопользовательских ОС каждый пользователь настраивает для себя интерфейс

пользователя, т.е. может создать собственные наборы ярлыков, группы программ, задать

индивидуальную цветовую схему, переместить в удобное место панель задач и добавить в

меню Пуск новые пункты.
     

В многопользовательских ОС существуют средства защиты информации каждого

пользователя от несанкционированного доступа других пользователей.
     

 Многопроцессорные и однопроцессорные операционные системы. Одним из важных свойств ОС является наличие в ней средств поддержки многопроцессорной обработки данных. Такие средства существуют в OS/2, Net Ware, Widows NT.По способу организации вычислительного процесса эти ОС могут быть разделены на асимметричные и симметричные.
   Одним из важнейших признаков классификации ЭВМ является разделение их на локальные и сетевые. Локальные ОС применяются на автономных ПК или ПК, которые используются в компьютерных сетях в качестве клиента.
   В состав локальных ОС входит клиентская часть ПО для доступа к удаленным ресурсам и услугам. Сетевые ОС предназначены для управления ресурсами ПК включенных в сеть с целью совместного использования ресурсов. Они представляют мощные средства разграничения доступа к информации, ее целостности и другие возможности использования сетевых ресурсов.

 






Понятие процесса.

В общем случае процесс—это некоторая деятельность, связанная с исполнением программы на процессоре.

При исполнении программ на центральном процессоре чаще всего различают следующие характерные отдельные состояния:

· порождение — подготавливаются условия для первого исполнения на процессоре

· активное состояние, или состояние “Счет” — программа исполняется на процессоре

· ожидание — программа не исполняется на процессоре по причине занятости какого-либо требуемого ресурса

· готовность — программа не исполняется, но для исполнения предоставлены все необходимые в текущий момент ресурсы, кроме центрального процессора

· окончание — нормальное или аварийное окончание исполнения программы, после которого процессор и другие ресурсы ей не предоставляются

Процесс находится в каждом из своих допустимых состояний в течение некоторого времени, после чего переходит в какое-то другое допустимое состояние. Состав допустимых состояний, а также допустимые переходы из состояния в состояние обычно задают в форме графа существования процесса.

Свойства и классификация процессов.

Процессы определяются рядом временных характеристик. В некоторый момент времени

процесс может быть порожден (образован), а через некоторое время закончен. Интервал между этими моментами называют интервалом существования процесса.

В момент порождения последовательность и длительность пребывания процесса в каждом из

своих состояний (трасса процесса) в общем случае непредсказуемы. Следовательно, непредсказуема и длительность интервала существования. Однако отдельные виды процессов требуют такого планирования, чтобы гарантировать окончание процесса до наступления некоторого конкретного момента времени. Процессы такого класса называют процессами реального времени. В другой класс входят процессы, время существования которых должно быть не более интервала времени допустимой реакции ЭВМ на запросы пользователя. Процессы такого класса называют интерактивными. Процессы, не вошедшие в эти классы, называют пакетными.

В любой ОС по требованию существующего или существовавшего процесса проводится

работа по порождению процессов. Процесс, задающий данное требование, называют порождающим, а создаваемый по требованию — порожденным. Если порожденный процесс на интервале своего существования в свою очередь выдает требование на порождение другого процесса, то он одновременно становится и порождающим.

При управлении процессами важно обеспечить воспроизводимость результатов работы

каждого процесса, учитывать и управлять той ситуацией, которая складывалась при развитии процесса. Поэтому часто оказывается важен не только результат счета, но и каким образом этот результат достигается. С этих позиций ОС сравнивает процессы по динамическим свойствам, используя понятие "трасса"— порядок и длительность пребывания процесса в допустимых состояниях на интервале существования.

В операционной системе принято различать процессы не только по времени, но и по месту

их развития, т. е. на каком из процессоров исполняется программа процесса. Точкой отсчета принято считать центральный процессор (процессоры), на котором развиваются процессы, называемые программными или внутренними. Такое название указывает на возможность существования в системе процессов, называемых внешними. Это процессы, развитие которых происходит под контролем или управлением ОС на процессорах, отличных от центрального. Ими могут быть, например, процессы ввода — вывода, развивающиеся в канале. Деятельность любого пользователя ЭВМ, который в том или ином виде вводит посредством ОС информацию, требуемую для исполнения одной или нескольких программ, можно также рассматривать как внешний процесс.

Программные процессы принято делить на системные и пользовательские. При развитии

системного процесса исполняется программа из состава операционной системы. При развитии пользовательского процесса исполняется пользовательская (прикладная)

Отношение предшествования. Для двух процессов это отношение означает, что первый

процесс должен переходить в активное состояние всегда раньше второго.

Отношение приоритетности. Процесс с приоритетом Р может быть переведен в активное состояние только при соблюдении двух условий: в состоянии готовности к рассматриваемому процессору нет процессов с большим приоритетом; процессор либо свободен, либо используется процессом с меньшим, чем Р, приоритетом.

Отношение взаимного исключения. Здесь два процесса используют обобщенный ресурс. При этом совокупность действий над этим ресурсом в составе одного процесса называют критической областью. Критическая область одного процесса не должна выполняться одновременно с критической областью над этим же ресурсом в составе другого процесса.

Трудность в реализации синхронизирующих правил в составе системы управления процессами обусловлена динамикой процессов, неопределенностью и непредсказуемостью порядка и частотой перехода процессов из состояния в состояние по мере их развития. Причем в отношении каждой совокупности взаимосвязанных процессов приходится решать собственную задачу синхронизации, которая требует определенного порядка выполнения процессов с целью установления требуемого взаимодействия. Помимо рассмотренных в каждой из задач могут использоваться и другие, более сложные виды отношений. Например, отношения "производители—потребители", "читатели—писатели" и т. д., устанавливаемые между взаимодействующими процессами.

 

Операции над процессами.

Набор операций

Процесс не может сам перейти из одного состояния в другое. Изменением состояния процессов занимается операционная система, совершая операции над ними. Удобно объединить их в три пары:

· Создание процесса — завершение процесса;

· Приостановка процесса (перевод из состояния исполнение в состояние готовность) — запуск процесса (перевод из состояния готовность в состояние исполнение);

· Блокирование процесса (перевод из состояния исполнение в состояние ожидание) — разблокирование процесса (перевод из состояния ожидание в состояние готовность);

еще одна операция, не имеющая парной: изменение приоритета процесса.

Операции создания и завершения процесса являются одноразовыми, так как применяются к процессу не более одного раза (некоторые системные процессы никогда не завершаются при работе вычислительной системы). Все остальные операции, связанные с изменением состояния процессов, будь то запуск или блокировка, как правило, являются многоразовыми.

Содержимое всех регистров процессора (включая значение программного счетчика) будем называть регистровым контекстом процесса, а все остальное – системным контекстом процесса. Знания регистрового и системного контекстов процесса достаточно для того, чтобы управлять его поведением в операционной системе, совершая над ним операции. Однако этого недостаточно, чтобы полностью характеризовать процесс. Операционную систему не интересует, какими именно вычислениями занимается процесс, т. е. какой код и какие данные находятся в его адресном пространстве. С точки зрения пользователя, наоборот, наибольший интерес представляет содержимое адресного пространства процесса, возможно наряду с регистровым контекстом, определяющее последовательность преобразования данных и полученные результаты. Код и данные, находящиеся в адресном пространстве процесса, будем называть его пользовательским контекстом. Совокупность регистрового, системного и пользовательского контекстов процесса для краткости принято называть просто контекстом процесса. В любой момент времени процесс полностью характеризуется своим контекстом.

Одноразовые операции

 Инициатором рождения нового процесса после старта операционной системы может выступить либо процесс пользователя, совершивший специальный системный вызов, либо сама операционная система, то есть, в конечном итоге, тоже некоторый процесс. Процесс, инициировавший создание нового процесса, принято называть процессом-родителем (parent process), а вновь созданный процесс - процессом-ребенком (child process). Процессы-дети могут, в свою очередь, порождать новых детей и т. д.

При рождении процесса система заводит новый PCB с состоянием процесса рождение и начинает его заполнение. Новый процесс получает свой собственный уникальный идентификационный номер.

После наделения процесса-ребенка ресурсами необходимо занести в его адресное пространство программный код, значения данных, установить программный счетчик.

После того как процесс наделен содержанием, в PCB дописывается оставшаяся информация и состояние нового процесса изменяется на готовность. Осталось сказать несколько слов о том, как ведут себя процессы-родители после рождения процессов-детей. Процесс-родитель может продолжать свое выполнение одновременно с выполнением процесса-ребенка, а может ожидать завершения работы некоторых или всех своих детей.

После того, как процесс завершил свою работу, операционная система переводит его в состояние закончил исполнение и освобождает все ассоциированные с ним ресурсы, делая соответствующие записи в блоке управления процессом. При этом сам PCB не уничтожается, а остается в системе еще некоторое время. Это связано с тем, что процесс-родитель после завершения процесса-ребенка может запросить операционную систему о причине произошедшей смерти порожденного им процесса и/или статистическую информацию об его работе. Подобная информация сохраняется в PCB мертвого процесса до запроса процесса-родителя или до конца его деятельности, после чего все следы умершего процесса окончательно исчезают из системы.

Многоразовые операции

Одноразовые операции приводят к изменению количества процессов, находящихся под управлением операционной системы, и всегда связаны с выделением или освобождением определенных ресурсов. Многоразовые операции, напротив, не приводят к изменению количества процессов в операционной системе и не обязаны быть связанными с выделением или освобождением ресурсов.

Запуск процесса.Из числа процессов, находящихся в состоянии готовность, операционная система выбирает один процесс для последующего исполнения. Для избранного процесса операционная система обеспечивает наличие в оперативной памяти информации, необходимой для его дальнейшего выполнения. Далее состояние процесса изменяется на исполнение, восстанавливаются значения регистров для данного процесса, и управление передается команде, на которую указывает счетчик команд процесса. Все данные, необходимые для этого восстановления контекста, извлекаются из PCB процесса, над которым совершается операция.

Приостановка процесса.Работа процесса, находящегося в состоянии исполнение, приостанавливается в результате какого-либо прерывания. Процессор автоматически сохраняет счетчик команд и, возможно, один или несколько регистров в стеке исполняемого процесса и передает управление по специальному адресу обработки данного прерывания. На этом деятельность hardware по обработке прерывания завершается. По указанному адресу обычно располагается одна из частей операционной системы. Она сохраняет динамическую часть системного и регистрового контекстов процесса в его PCB, переводит процесс в состояние готовность и приступает к обработке прерывания, то есть к выполнению определенных действий, связанных с возникшим прерыванием.

Блокирование процесса.Процесс блокируется, когда он не может продолжать свою работу, не дождавшись возникновения какого-либо события в вычислительной системе. Для этого он обращается к операционной системе с помощью определенного системного вызова. Операционная система обрабатывает системный вызов (инициализирует операцию ввода-вывода, добавляет процесс в очередь процессов, дожидающихся освобождения устройства или возникновения события, и т. д.) и, при необходимости, сохранив необходимую часть контекста процесса в его PCB,переводит процесс из состояния исполнение в состояние ожидание. П

Разблокирование процесса. После возникновения в системе какого-либо события, операционной системе нужно точно определить какое именно событие произошло. Затем операционная система проверяет: находился ли некоторый процесс в состоянии ожидание для данного события и, если находился, переводит его в состояние готовность, выполняя необходимые действия, связанные с наступлением события (инициализация операции ввода-вывода для очередного ожидающего процесса и т. п.).

Переключение контекста

Для корректного переключения процессора с одного процесса на другой необходимо сохранить контекст исполнявшегося процесса и восстановить контекст процесса, на который будет переключен процессор. Такая процедура сохранения/восстановления работоспособности процессов называется переключением контекста. Время, затраченное на переключение контекста, не используется вычислительной системой для совершения полезной работы и представляет собой накладные расходы, снижающие производительность системы. Оно меняется от машины к машине и обычно находится в диапазоне от 1 до 1000 микросекунд. Существенно сократить накладные расходы в современных операционных системах позволяет расширенная модель процессов, включающая в себя понятие threads of execution (нити исполнения или просто нити).

 

 

Уровни и параметры планирования процессов.

Уровни планирования

Планирование заданий выступает в качестве долгосрочного планирования процессов. Оно отвечает за порождение новых процессов в системе, определяя ее степень мультипрограммирования, т. е. количество процессов, одновременно находящихся в ней. Если степень мультипрограммирования системы поддерживается постоянной, т. е. среднее количество процессов в компьютере не меняется, то новые процессы могут появляться только после завершения ранее загруженных. Поэтому долгосрочное планирование осуществляется достаточно редко, между появлением новых процессов могут проходить минуты и даже десятки минут. Решение о выборе для запуска того или иного процесса оказывает влияние на функционирование вычислительной системы на протяжении достаточно длительного интервала времени. Отсюда и проистекает название этого уровня планирования — долгосрочное. В некоторых операционных системах долгосрочное планирование сведено к минимуму или совсем отсутствует. Так, например, во многих интерактивных системах разделения времени порождение процесса происходит сразу после появления соответствующего запроса. Поддержание разумной степени мультипрограммирования осуществляется за счет ограничения количества пользователей, которые могут работать в системе, и человеческой психологии. Если между нажатием на клавишу и появлением символа на экране проходит 20-30 секунд, то многие пользователи предпочтут прекратить работу и продолжить ее, когда система будет менее загружена.

Планирование использования процессора выступает в качестве краткосрочного планирования процессов. Оно проводится, к примеру, при обращении исполняющегося процесса к устройствам ввода-вывода или просто по завершении определенного интервала времени. Поэтому краткосрочное планирование осуществляется весьма часто, как правило, не реже одного раза в 100 миллисекунд. Выбор нового процесса для исполнения оказывает влияние на функционирование системы до наступления очередного аналогичного события, т. е. в течение короткого промежутка времени, что и обусловило название этого уровня планирования — краткосрочное.

В некоторых вычислительных системах бывает выгодно для повышения их производительности временно удалить какой-либо частично выполнившийся процесс из оперативной памяти на диск, а позже вернуть его обратно для дальнейшего выполнения. Такая процедура в англоязычной литературе получила название swapping, что можно перевести на русский язык как перекачка, хотя в профессиональной литературе оно употребляется без перевода — свопинг. Когда и какой из процессов нужно перекачать на диск и вернуть обратно, решается дополнительным промежуточным уровнем планирования процессов — среднесрочным.

Критерии планирования и требования к алгоритмам

Для каждого уровня планирования процессов можно предложить много различных алгоритмов. Выбор конкретного алгоритма определяется классом задач, решаемых вычислительной системой, и целями, которых мы хотим достичь, используя планирование. К числу таких целей можно отнести:

§ Справедливость: гарантировать каждому заданию или процессу определенную часть времени использования процессора в компьютерной системе, стараясь не допустить возникновения ситуации, когда процесс одного пользователя постоянно занимает процессор, в то время как процесс другого пользователя фактически не приступал к выполнению.

§ Эффективность: постараться занять процессор на все 100% рабочего времени, не позволяя ему простаивать в ожидании процессов готовых к исполнению. В реальных вычислительных системах загрузка процессора колеблется от 40 до 90 процентов.

§ Сокращение полного времени выполнения (turnaround time): обеспечить минимальное время между стартом процесса или постановкой задания в очередь для загрузки и его завершением.

§ Сокращение времени ожидания (waiting time): минимизировать время, которое проводят процессы в состоянии готовность и задания в очереди для загрузки.

§ Сокращение времени отклика (response time): минимизировать время, которое требуется процессу в интерактивных системах для ответа на запрос пользователя.

Независимо от поставленных целей планирования желательно также, чтобы алгоритмы обладали следующими свойствами:

§ Были предсказуемыми. Одно и то же задание должно выполняться приблизительно за одно и то же время. Применение алгоритма планирования не должно приводить, к примеру, к извлечению корня квадратного из 4 за сотые доли секунды при одном запуске и за несколько суток при втором запуске.

§ Имели минимальные накладные расходы, связанные с их работой. Если на каждые 100 миллисекунд, выделенных процессу для использования процессора, будет приходиться 200 миллисекунд на определение того, какой именно процесс получит процессор в свое распоряжение, и на переключение контекста, то такой алгоритм, очевидно, использовать не стоит.

§ Равномерно загружали ресурсы вычислительной системы, отдавая предпочтение тем процессам, которые будут занимать малоиспользуемые ресурсы.

§ Обладали масштабируемостью, т. е. не сразу теряли работоспособность при увеличении нагрузки. Например, рост количества процессов в системе в два раза не должен приводить к увеличению полного времени выполнения процессов на порядок.

Многие из приведенных выше целей и свойств являются противоречивыми. Улучшая работу алгоритма с точки зрения одного критерия, мы ухудшаем ее с точки зрения другого.

Параметры планирования

Все параметры планирования можно разбить на две большие группы: статические параметры и динамические параметры. Статические параметры не изменяются в ходе функционирования вычислительной системы, динамические же, напротив, подвержены постоянным изменениям.

К статическим параметрам вычислительной системы можно отнести предельные значения ее ресурсов (размер оперативной памяти, максимальное количество памяти на диске для осуществления свопинга, количество подключенных устройств ввода-вывода и т. п.). Динамические параметры системы описывают количество свободных ресурсов в текущий момент времени.

К статическим параметрам процессов относятся характеристики, как правило, присущие заданиям уже на этапе загрузки:

§ Каким пользователем запущен процесс или сформировано задание.

§ Насколько важной является поставленная задача, т. е. каков приоритет ее выполнения.

§ Сколько процессорного времени запрошено пользователем для решения задачи.

§ Каково соотношение процессорного времени и времени, необходимого для осуществления операций ввода-вывода.

§ Какие ресурсы вычислительной системы (оперативная память, устройства ввода-вывода, специальные библиотеки и системные программы и т. д.) и в каком количестве необходимы заданию.

Алгоритмы долгосрочного планирования используют в своей работе статические и динамические параметры вычислительной системы и статические параметры процессов (динамические параметры процессов на этапе загрузки заданий еще не известны). Алгоритмы краткосрочного и среднесрочного планирования дополнительно учитывают и динамические характеристики процессов. Для среднесрочного планирования в качестве таких характеристик может выступать следующая информация:

§ Сколько времени прошло со времени выгрузки процесса на диск или его загрузки в оперативную память.

§ Сколько оперативной памяти занимает процесс.

§ Сколько процессорного времени было уже предоставлено процессу.

Рис 3.1. Фрагмент деятельности процесса с выделением промежутков непрерывного использования процессора и ожидания ввода-вывода.

Для краткосрочного планирования нам понадобится ввести еще два динамических параметра. Деятельность любого процесса можно представить как последовательность циклов использования процессора и ожидания завершения операций ввода-вывода. Промежуток времени непрерывного использования процессора носит на английском языке название CPU burst, а промежуток времени непрерывного ожидания ввода-вывода – I/O burst. На рисунке 3.1. показан фрагмент деятельности некоторого процесса на псевдоязыке программирования с выделением указанных промежутков. Для краткости изложения мы будем использовать термины CPU burst и I/O burst без перевода. Значения продолжительности последних и очередных CPU burst и I/O burst являются важными динамическими параметрами процесса.

8. Вытесняющее и невытесняющее планирование.

Процесс планирования осуществляется частью операционной системы, называемой планировщиком. Планировщик может принимать решения о выборе для исполнения нового процесса, из числа находящихся в состоянии готовность, в следующих четырех случаях:

1. Когда процесс переводится из состояния исполнение в состояние завершение.

2. Когда процесс переводится из состояния исполнение в состояние ожидание.

3. Когда процесс переводится из состояния исполнение в состояние готовность (например, после прерывания от таймера).

4. Когда процесс переводится из состояния ожидание в состояние готовность (завершилась операция ввода-вывода или произошло другое событие).

В случаях 1 и 2 процесс, находившийся в состоянии исполнение, не может дальше исполняться, и для выполнения всегда необходимо выбрать новый процесс. В случаях 3 и 4 планирование может не проводиться, процесс, который исполнялся до прерывания, может продолжать свое выполнение после обработки прерывания. Если планирование осуществляется только в случаях 1 и 2, говорят, что имеет место невытесняющее (nonpreemptive) планирование. В противном случае говорят о вытесняющем (preemptive) планировании. Термин “вытесняющее планирование” возник потому, что исполняющийся процесс помимо своей воли может быть вытеснен из состояния исполнение другим процессом.

Невытесняющее планирование. При таком режиме планирования процесс занимает столько процессорного времени, сколько ему необходимо. При этом переключение процессов возникает только при желании самого исполняющегося процесса передать управление (для ожидания завершения операции ввода-вывода или по окончании работы). Этот метод планирования относительно просто реализуем и достаточно эффективен, так как позволяет использовать большую часть процессорного времени на работу самих процессов и до минимума сократить затраты на переключение контекста. Однако при невытесняющем планировании возникает проблема возможности полного захвата процессора одним процессом, который вследствие каких-либо причин (например, из-за ошибки в программе) зацикливается и не может передать управление другому процессу. В такой ситуации спасает только перезагрузка всей вычислительной системы.

Вытесняющее планирование обычно используется в системах разделения времени. В этом режиме планирования процесс может быть приостановлен в любой момент своего исполнения. Операционная система устанавливает специальный таймер для генерации сигнала прерывания по истечении некоторого интервала времени — кванта. После прерывания процессор передается в распоряжение следующего процесса. Временные прерывания помогают гарантировать приемлемые времена отклика процессов для пользователей, работающих в диалоговом режиме, и предотвращают “зависание” компьютерной системы из-за зацикливания какой-либо программы.

9. Алгоритмы планирования.










Последнее изменение этой страницы: 2018-05-30; просмотров: 331.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...