Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ТЕМА ПРЕЗЕНТАЦИИ ПО ФИЗИКЕ: Физиотерапия




Вариант № 13

Контрольная работа №1

I. Написать ответы на вопросы:

1. Липосомы. Определение. Схематическое изображение. Липосомные лекарственные косметологические формы.

Липосомы, или липидные пузырьки, известны давно, да и знакомы, наверно, каждому: очень похожи на них те капельки жира, которые попадают в воду, но это, разумеется, сходство чисто внешнее. Конечно, те, о которых пойдет речь, очень малы – много меньше клетки, и жир в них не пищевой, а клеточный – липиды, входящие в состав всех клеток организма. Липосомы представляют собой замкнутые пузырьки воды, окруженные одним или несколькими слоями липидов. Размеры и форма липосом зависят от многих факторов: кислотности среды, присутствия солей и т.п. Впервые на них обратил внимание английский исследователь Алек Бангем с коллегами в 1965 году. Они заметили, что липосомы (это название утвердилось года три спустя) весьма напоминают мембраны клеток. В те годы уже было известно, что клеточные мембраны выполняют много функций, и липосомы сразу же стали важным инструментом для их изучения. Как модели мембран, липосомы позволили исследовать ряд их свойств: электрическое сопротивление, проницаемость для молекул воды, для ионов и других заряженных частиц, а также для содержимого клеток. Липосомы используются, кроме того, для изучения действия на мембраны витаминов, гормонов, антибиотиков и других препаратов. Эта сторона дела привлекла наибольшее внимание исследователей, поскольку выяснилось, что липосомы хорошо справляются с ролью носителей лекарств.

Известно, что заболевания поражают не весь организм, а развиваются в отдельных органах и тканях. Так, например, при раке главные события происходят в месте расположения опухоли, при инфаркте миокарда – в мышце сердца, при дизентерии – в кишечнике. Поэтому и лечение пойдет быстрее и успешнее, если лекарства будут действовать непосредственно в очаге заболевания. Особенно это важно в тех случаях, когда приходится иметь дело с весьма ядовитыми препаратами, которые хорошо лечат саму болезнь, но при этом плохо влияют на другие системы организма. Часто это заставляет отказываться от использования подобных веществ и применять менее эффективные.

Однако создать нужную концентрацию лекарственных веществ в пораженных болезнью местах, не затрагивая остальные, – задача непростая. Ведь медикаменты, каким бы способом их ни вводили, расходятся по всему организму более или менее равномерно. А чтобы они попали в нужные места, сделали вывод медики, необходим какой-то носитель, который бы мог их туда доставить. За последние несколько лет было предпринято много попыток для решения этой проблемы, перепробовано множество соединений, и оказалось, что лучшими носителями лекарств являются липосомы.

2. Мембранный потенциал. Определение. Величина. Микроэлектродный метод измерения МП.

МП, или потенциал покоя, – это разность потенциалов между наружной и внутренней поверхностями мембраны в условиях покоя. В среднем у клеток возбудимых тканей он достигает 50–80 мВ, со знаком «–» внутри клетки. Обусловлен преимущественно ионами калия. Как известно, в клетках возбудимых тканей концентрация ионов калия достигает 150 ммоль/л, в среде – 4–5 ммоль (ионов калия намного больше в клетке, чем в среде). Поэтому по градиенту концентрации калий может выходить из клетки, и это происходит с участием калиевых каналов, часть которых открыта в условиях покоя. В результате из-за того, что мембрана непроницаема для анионов клетки (глутамат, аспартат, органические фосфаты), на внутренней поверхности клетки образуется избыток отрицательно заряженных частиц, а на наружной – избыток положительно заряженных частиц. Возникает разность потенциалов. Чем выше концентрация калия в среде – тем меньше это отношение, тем меньше величина мембранного потенциала. Однако расчетная величина, как правило, ниже реальной. Например, по расчетам МП должен быть -90 мВ, а реально -70 мВ. Это расхождение обусловлено тем, что ионы натрия и хлора тоже вносят свой вклад в создание МП. В частности, известно, что натрия больше в среде (140 ммоль/л против 14 ммоль/л внутриклеточной). Поэтому натрий может войти в клетку. Но большая часть натриевых каналов в условиях покоя закрыта. Поэтому в клетку входит лишь небольшая часть ионов натрия. Но и этого достаточно, чтобы хотя бы частично компенсировать избыток анионов. Ионы хлора, наоборот, входят в клетку (частично) и вносят отрицательные заряды. В итоге величина мембранного потенциала определяется в основном калием, а также натрием и хлором.

Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионного гетсрогенитета – ионной асимметрии. Для этого, в частности, служит калий-натриевый насос (и хлорный), который восстанавливает ионную асимметрию, особенно после акта возбуждения. Доказательством калиевой природы МП является наличие зависимости: чем выше концентрация калия в среде, тем меньше величина МП. Для дальнейшего изложения важно понятие: деполяризация (уменьшение МП, например, от минус 90 мВ до минус 70 мВ) и гиперполяризация – противоположное явление.

3. Теория "пульсирующей камеры". Пульсовая волна. "Периферическое сердце".

При сокращении сердечной мышцы (систола) кровь выбрасыва­ется из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к перифе­рии. Упругость стенок сосудов приводит к тому, что во время сис­толы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т. е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давле­ние человека в норме равно приблизительно 16 кПа. Во время рас­слабления сердца (диастола) растянутые кровеносные сосуды спа­дают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11 кПа.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в пе­риод систолы, называют пульсовой вольной.

Пульсовая волна распространяется со скоростью 5—10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она должна распространиться на расстояние 1,5—3 м, что больше расстояния от сердца к конечностям. Это означает, что начало пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Профиль части артерии схематически показан на рис. 9.6: а — после прохождения пульсовой волны, б — в артерии начало пульсовой волны, в — в артерии пульсовая волна, г — начинается спад повышенного давления.

Пульсовой волне будет соответствовать пульсирование скорости кровотока в крупных артериях, однако скорость крови (максимальное значение 0,3—0,5 м/с) существенно меньше скорости распространения пульсовой волны.

Из модельного опыта и из общих представлений о работе сердца ясно, что пульсовая волна не является синусоидальной (гармонической). Как всякий периодический процесс, пульсовая волна может быть представлена суммой гармонических волн. Поэтому уделим внимание, как некоторой модели, гармонической пульсовой волне.

Теория «периферического сердца» появилась в результате того, что господствовавшая теория Генле, согласно которой сердце является единственным «мотором» для продвижения крови, не давала удовлетворительного объяснения многим явлениям кровообращения. Считалось, что сосуды только распределяют кровь по областям тела, причем различие в кровенаполнении их определяется изменениями сосудистого тонуса. Однако только лишь колебаниями сосудистого тонуса трудно было объяснить очень многие явления, наблюдающиеся в эксперименте и в клинике: компенсаторное развитие гладкомышечных элементов того или иного отдела кровеносной системы при гипоплазии медии в других отделах; активная сосудистая перистальтика у многих низших животных, не имеющих сердца (annelides), служащая для передвижения крови; наличие у сосудов высших животных спонтанных ритмических сосудистых сокращений.

Основными доказательствами теории «периферического сердца» явились многочисленные факты того, что периферическое артериальное русло имеет автономную активность по изменению сосудистого тонуса. Так, было отмечено, что при сужении сосудов наступает усиление сосудистой перистальтики, подобно тому, как усиление кишечной перистальтики находится в зависимости от стеноза кишок. С. П. Заводская отмечала различные степени сосудистого напряжения в разные моменты прохождения пульсовой волны с преобладанием напряжения в диастолической части. Преобладание тонуса диастолической части при сдавлении вышележащего участка артерии — «подавляется первая систолическая волна и оказываются выше диастолические волны; пульс принимает твердые формы, несмотря на уменьшенное при этом наполнение сосуда», — описывал Н. А. Куршаков [1, 2]. Повышение периферического давления под манжеткой при измерении высоты периферического давления отмечали А. А. Миллер и А. Л. Мясников (1926).

II. Дать ответы на тесты и занести в таблицу(тесты содержатся в пособии: Рабочая тетрадь по биофизике).

 

 

Регистрация кривой порога слышимости

Изучение аппарата для измерения артериального давления

Снятие электрокардиограммы и построение вектора ЭДС сердца

№ вопроса Ответ № вопроса Ответ № вопроса Ответ
1. 1 1. 2 1. 2
2. 3 2. 2 2. 1
3. 2 3. 2 3. 5,2,3,1,4
4. 2 4. 3 4. 1
5. 1 5. 3 5. 3,4,2,5,1
6. 4 6. 1 6. 3
7. 1 7. 1 7. 3
8. 1 8. 1 8. 2,4,1,5,3
9. 3 9. 2 9. 3
10. 1 10. 3 10. 2

 

Контрольная работа №2

I. Написать ответы на вопросы:

1. Объясните блок-схему генератора незатухающих колебаний. Объясните назначение блоков.

В колебательном контуре генератора возникают незатухающие электромагнитные колебания, т.к. конденсатор периодически / полпериода / подзаряжается током от источника тока. Транзистор играет роль клапана пропуская или нет через себя ток. Когда φ э >φб , то ток проходит через транзистор и наоборот. φ базы периодически меняется благодаря индуктивной связи катушек L и Lсв.

 

Принцип действия генератора рассматриваем по половинам периодов.

1. половина периода: Когда лампа пришла в рабочее состояние и может пропускать ток, ключ замыкают. Постоянный ток идёт по анодной цепи и заряжает конденсатор (нижнюю обкладку – положительно). Когда конденсатор зарядится до максимального заряда, ток прекращается и колебательный контур предоставлен самому себе. Конденсатор начинает разряжаться, через катушку L течёт переменный ток: растущий в периода и убывающий во периода. Он создаёт переменное магнитное поле, направление которого определяем по правилу буравчика. Такое же магнитное поле возникает и в катушке L1, которая индуктивно связана с катушкой колебательного контура. В катушке L1 возникает индукционный ток, направленный к сетке лампы. На сетке накапливается положительный заряд, лампа открыта, ток через неё идёт, в колебательном контуре совпадает по направлению с током перезарядки и восполняет все потери энергии в колебательном контуре. Конденсатор перезарядится до максимального заряда.

2. 2-ая половина периода: К началу второй половины периода, конденсатор перезарядился. Теперь его верхняя обкладка заряжена положительно и в колебательном контуре ток разрядки течёт в противоположном направлении. Магнитное поле в катушках L и L1 направлено вниз, и индукционный ток идёт от сетки. Сетка заряжается отрицательно, лампа заперта, ток через неё не идёт и колебательный контур предоставлен самому себе. В нём идёт 2-ая половина периода, происходит расход энергии на работу против сопротивления. Эта утечка энергии восстановится в течение 1-ой половины следующего периода.

5. После устного разбора, ученики под руководством учителя перечерчивают чертежи в тетради и под диктовку записывают подробное пояснение.

 

2. Дать определение электростимуляции, её назначение. Дать определение электродиагностики. Назначение электродиагностики.

Электростимуляция – это использование импульсных токов для восстановительного лечения тканей, органов и систем, особенно нервов и мышц, утративших свою нормальную функцию в результате болезни или травмы.

Электростимуляция имеет решающее значение в комплексе восстановительного лечения повреждений и заболеваний нервной системы, ведущих к ограничению активных движений, снижению силы и гипотрофии (похуданию) мышц.

Электростимуляция, вызывая двигательное возбуждение и сокращение мышц, одновременно рефлекторно усиливает весь комплекс обменно-трофических процессов, направленных на энергетическое обеспечение работающих мышц, а также повышается активность регулирующих систем, в том числе клеток коры головного мозга. При прохождении стимулирующего электрического тока вдоль нервных стволов повышается проводимость по ним нервного возбуждения, ускоряется регенерация поврежденных нервов. Сокращение мышц, вызываемое стимулирующим электрическим током даже при полном нарушении проводимости нерва, в силу указанных выше процессов, тормозит развитие атрофии мышц и склеротических изменений (перерождение мышечной ткани в соединительную, т.е. в ткань не способную к активному сокращению) в них.

Электростимуляция улучшает кровообращение путём расширения кровеносных сосудов и ускорения в них кровотока, например, на коже это проявляется гиперемией (покраснением) и повышением температуры кожи под электродами. Активизация крово- и лимфообращения происходит и в более глубоких тканях межэлектродного пространства, повышается проницаемость сосудистых стенок, раскрываются резервные капилляры. Гиперемия возникает не только в результате рефлекторных влияний электростимуляции, но и за счёт непосредственного воздействия на стенки сосудов биологически активных веществ, образующихся в стимулируемых тканях, например: гистамина, ацетилхолина, адреналина и других. Активизация кровообращения под воздействием электростимуляции является фактором, обеспечивающим многие компоненты лечебного процесса. Это – улучшение трофики (питания) тканей, удаление продуктов нарушенного обмена веществ из патологических очагов, рассасывание отёков, размягчение и рассасывание рубцов, регенерация (восстановление) поврежденных тканей, нормализация нарушенных функций. Наряду с улучшением кровообращения стимулируемой области активизируются процессы синтеза нуклеиновых кислот, в том числе РНК.

Электростимуляция регулирует активность центральной нервной системы (головного и спинного мозга), восстанавливает активность нервно-мышечного аппарата, восстанавливает тонус мышц и объем мышечной массы, увеличивает сосудистое русло артериальной и венозной крови, питающее нервы и мышцы, а также обладает обезболивающим эффектом.

Электростимуляция показана при следующих проявлениях болезни:

периферические (вялые) парезы и параличи (ограничение активных движений) вследствие травмы и заболеваний нервов (невритов), нервных сплетений (плекситов), нервных корешков (радикулитов),

нарушения чувствительности кожных покровов вследствие травм и заболеваний нервов (невритов), нервных сплетений (плекситов), нервных корешков (радикулитов),

центральные (спастические) парезы и параличи (ограничение активных движений) вследствие травмы и заболеваний головного и спинного мозга,

нарушения чувствительности кожных покровов вследствие травм и заболеваний головного и спинного мозга,

гипотрофия мышц (похудание) вследствие длительной гиподинамии, длительной иммобилизации гипсовой или другой повязкой.

Противопоказания к электростимуляции:

лихорадочные состояния,

сепсис,

острые гнойные воспалительные процессы,

тромбофлебит,

тромбоэмболическая болезнь,

злокачественные новообразования,

эпилепсия,

дерматозы,

кровотечения, наклонность к кровотечениям,

высокая артериальная гипертензия,

мерцательная аритмия,

имплантированный электрокардиостимулятор,

острый период инфаркта миокарда,

острый период инсульта,

переломы костей до их консолидации (сращения),

состояние после шва нерва, сухожилия, сосуда в течение трех недель после операции.

 

3. Опишите устройство и принцип действия КФК-2.

К о л о р и м е т р фотоэлектрический концентрационный КФК-2 предназначен для измерения в отдельных участках диапазона длин волн 315-980 нм, выделяемых светофильтрами, коэффициентов пропускания и оптической плотности жидкостных растворов и твердых тел, а также определения концентрации веществ в растворах методом построения градуировочных графиков. Колориметрпозволяет также производить измерения коэффициентов пропускания рассеивающих взвесей, эмульсий и коллоидных растворов в проходящем свете. Колориметрприменяется на предприятиях водоснабжения, в металлургической, химической, пищевой промышленности, в сельском хозяйстве, в медицине и других областях народного хозяйства. По условиям эксплуатации колориметротносится к категории 4.2 исполнение УХЛ, в тропическом исполнении к категории 4.2 исполнение Т ГОСТ 15150-69.

Нормальными условиями работы колориметра являются:

  • температура окружающей среды (20±5)°С,
  • относительная влажность воздуха 45-80°/о,
  • напряжение питания сети (220±4,4) В, 50 Гц.

Фотометрические исследования проводят с помощью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.

Устройство и принцип действия фотометрических приборов рассмотрим на примере колориметра фотоэлектрического концентрационного КФК-2 и спектрофотометра СФ-46.

Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания 100-5% (D = 0-1,3). Основная абсолютная погрешность измерения пропускания 1%.

Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис. 2.2.

Свет от галогенной малогабаритной лампы (1) проходит последовательно через систему линз, теплозащитный (2), нейтральный (3), выбранный цветной (4) светофильтры, кювету с раствором (5), попадает на пластину (6), которая делит световой поток на два: 10% света направляется на фотодиод при измерениях в области спектра 590-540 нм) и 90% — на фотоэлемент (при измерениях в области спектра 315-540 нм).

Дать ответы на тесты и занести в таблицу (тесты содержатся в пособии: Рабочая тетрадь по биофизике).

 

Модуль № 2

 

Изучение аппарата УВЧ-терапии

Изучение медицинского аппарата для гальванизации

Определение подвижности ионов методом электрофореза

№ вопроса Ответ № вопроса

Ответ

№ вопроса

Ответ

1. 3 1.

3

1.

1

2. 3 2.

1

2.

2

3. 1 3.

4

3.

1

4. 2 4.

2,4,1,3,5

4.

2

5. 1 5.

4

5.

2

6. 3 6.

2

6.

4

7. 1 7.

2

7.

1

8. 1 8.

3

8.

1

9. 2 9.

4

9.

1

10. 3 10.

4

10.

1

Определение радиоактивного фона с помощью индикатора радиоактивности РАДЭКС

Определение концентрации веществ в растворах с помощью колориметра фотоэлектрического

Гигиеническая оценка естественного и искусственного освещения помещений

№ вопроса Ответ

№ вопроса

Ответ

№ вопроса

Ответ
1. 2

1.

1

1.

4
2. 1

2.

4

2.

3
3. 1

3.

4

3.

2
4. 2

4.

4

4.

2
5. 3

5.

3,5,6,1,2

5.

1
6. 3

6.

2

6.

3
7. 1

7.

2

7.

2
8. 2

8.

2

8.

1-в2-а3-б
9. 2

9.

1

9.

4
10. 4

10.

2

10.

1
               

ТЕМА ПРЕЗЕНТАЦИИ ПО ФИЗИКЕ: Физиотерапия

Вопросы данной темы:

1.Электромагнитные волны. Уравнение электромагнитной волны. Ско-

рость распространения. Вектор Умова - Пойтинга.

2.  Физические процессы, происходящие в тканях организма под воз-

действием электромагнитных волн сверхвысокочастотного диапазо-

   на (ДЦВ и СМВ - терапия).

 

Литература:

1. Ремизов А.Н. Медицинская и биологическая физика, М., «Высшая школа»,1999, гл. 23.

2. ЛивенцевН.М. «Курс физики» (1-часть) Москва «Высшая школа», 1978г, гл. 12.

3. ЛивенцевН.М. «Курс физики» ( 2-часть) Москва «Высшая школа», 1978г, гл. 27,28.     В.Ф. Антонов, А.М. Черныш, Е.К.Козлова, А.В. Коржуев «Физика и биофизика», «ГЭОТАР-Медиа», гл.5.

4. В.Ф. Боголюбов, «Физиотерапия» Москва, 1999.










Последнее изменение этой страницы: 2018-05-30; просмотров: 194.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...