Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Принцип действия пузырьковой камеры
В начале пятидесятых годов прошлого столетия Дональд Глейзер придумал прибор, регистрирующий элементарные частицы. Он получил название пузырьковой камеры. Основная часть модели камеры — стеклянная колба с эфиром объемом несколько кубических сантиметров. Жидкость нагревается и находится под давлением около 20 атм. Специальное устройство позволяет быстро сбрасывать давление. Если во время «ожидания» пролетала заряженная частица, то вдоль следа появлялись пузырьки пара. Сфотографировав след, можно было снова повысить давление, пузырьки исчезали — и прибор снова в работе. Почему пузырьки появлялись именно на пути частицы? Возьмем две пробирки, одну из них тщательно вымоем, проследим, чтобы на стенках не было царапин или посторонних частиц, и наполним ее дистиллированной водой (приблизительно 10 см3). Во вторую пробирку нальем такое же количество водопроводной воды и еще бросим кусочек мела. Будем подогревать пробирки в одинаковых условиях и при отсутствии прямого соприкосновения с огнем. В пробирке с водопроводной водой кипение начнется раньше, и процесс этот будет проходить достаточно спокойно и непрерывно, пузырьки пара образуются в основном на кусочке мела. В пробирке с дистиллированной водой процесс кипения начнется позже (при большей температуре) и будет происходить неравномерно. В лаборатории удается очистить сосуд и воду так хорошо, что кипение не наступает вплоть до температуры 140°С. Если в такую воду, названную перегретой, бросить крупинку, произойдет взрыв — так быстро образуются пузырьки с паром. Для того чтобы процесс кипения происходил равномерно, в сосуд помещают так называемые «кипелки» — обломки стеклянных и фарфоровых трубок, кусочки мрамора и т. п. Описание описанных свойств жидкости связано с силами поверхностного натяжения, которые стремятся раздавить образовавшийся пузырек. Дополнительное давление тем больше, чем меньше радиус пузырька. Так что процесс кипения подавляется в самом зародыше. Именно потому однородную жидкость удается перегревать.
Вопросы и задания 1. С какой целью проводился эксперимент, описанный в тексте? 2. Почему в пробирке с водопроводной водой пузырьки образуются в основном на кусочке мела? Что является «кипелкой» для процесса кипения воды в обычном чайнике? 3. Объясните, как вы понимаете смысл понятия «перегретая жидкость». 4. Почему важнейшим условием работы камеры Глейзера является однородность жидкости и чистота ампулы? 19 Задание 3: Текст по разделу «Молекулярная физика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний
Способности живых существ защищаться от холода Реакции животных на разный тепловой режим жизнеобеспечения разнообразны. И все они направлены на регулирование уровня теплопередачи. Животные с высоким уровнем обменных процессов — птицы и млекопитающие — поддерживают постоянную температуру тела даже при значительных колебаниях температуры внешней среды. Тепло выделяется при биохимических реакциях внутри организма. Снижению теплопотерь способствуют опущение, оперение, шерстный покров, жировые отложения, темный окрас покрова. Обратите внимание на птиц. Мелкие пташки — воробьи, синицы, снегири — зимой похожи на пушистые комочки с торчащими острыми клювиками. Они распушили свое оперение и окружили себя неподвижным слоем плохо проводящего тепло воздуха. Мудрая природа распорядилась так, что относительная длина перьев у маленьких птиц больше, чем у крупных. Маленькие птицы теряют больше тепла, им нужна лучшая защита от холода. Теплопроизводительная способность живого существа зависит от объема тела, а потери тепла — от площади их поверхности. У мелких животных и детенышей соотношение потерь тепла к его притоку больше, чем у крупных, т.е. они поставлены в худшие условия. Дети должны замерзать быстрее, чем взрослые, но их спасает большая подвижность. Человек, находясь вне жилища, защищается от холода аналогично: с помощью хорошей одежды, высококалорийного питания и двигательной активности.
Вопросы и задания 1. Назовите отличительную особенность теплопроводности как вида теплопередачи. Почему воздух является плохим проводником тепла? 2. В сильный мороз птицы чаще замерзают на лету, чем сидя на месте. Чем это можно объяснить? Почему в холодную погоду многие животные спят, свернувшись клубком? 3. У человека замерзают быстрее всего конечности, уши и нос, так как эти части тела имеют тонкие стенки. А еще почему? 4. Когда человеку холодно, он начинает дрожать. Какую роль играют эти защитные механизмы для увеличения внутренней энергии человека?
20 Задание 3: Текст по разделу «Молекулярная физика и термодинамика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задания на понимание физических терминов, определение явления или его признаков, объяснение явления при помощи имеющихся знаний. Броуновское движение В своей повседневной жизни мы часто сталкиваемся с явлением диффузии – проникновением молекул одного вещества среди молекул другого (засолка продуктов, окраска тканей и т.д.). Причём выше температура веществ, тем процесс диффузии происходит быстрее. В 1827г. английский учёный Р.Броун впервые наблюдал это явление, рассматривая в микроскоп взвешенные в воде споры плауна. Броуновское движение можно наблюдать и в газе. Вот как описывает броуновское движение немецкий физик Р.Поль. Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы того, что совершается в природе. Перед ним открывается мир – безостановочная сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняя направление движения. Медленнее продвигаются более крупные частицы, но и они постоянно меняют своё направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет своё направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая – вот какое сильное, подавляющее впечатление производит эта картина на наблюдателя». Броуновским движением является дрожание стрелок чувствительных измерительных приборов, которое происходит из-за теплового движения атомов деталей приборов и окружающей среды. Молекулярно-кинетическая теория броуновского движения была создана А.Эйнштейном в 1905г. Ответьте на вопросы к тексту: 1) Какова причина броуновского движения? 2) Как влияет температура вещества на броуновское движение? 3) Наблюдается ли броуновское движение в твердых телах? 4) Кто окончательно построил теорию броуновского движения и экспериментально ее подтвердил?
3 Задание 3: Текст по разделу «Молекулярная физика и термодинамика», содержащий описание использования законов МКТ и термодинамики в технике. Задания на понимание основных принципов, лежащих в основе работы описанного устройства. Тепловая машина. В современной технике механическую энергию в основном получают за счёт внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, получили название тепловых двигателей. Если в цилиндре есть поршень, который может свободно перемещаться, то можно заставить перемещаться этот поршень за счёт расширения газа, т.е. газ совершит работу. В этом случае газ называют рабочим телом. Чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа каждый раз возвращался в исходное положение, сжимая газ до первоначального положения. Сжатие газа может происходить только под действием внешней силы, которая при этом совершает работу. После этого вновь могут происходить процессы расширения и сжатия газа. Следовательно, работа теплового двигателя должна состоять из периодически повторяющихся процессов расширения и сжатия. Рассмотрим принцип работы поршневого двигателя. В таком двигателе рабочим телом является газ, который давит на поршень, вследствие чего поршень перемещается. При расширении газа возникает движение поршня, которое передаёт валу двигателя с укреплённым на ней маховиком. Для сжатия газа поршень должен переместиться под действием внешней силы в противоположном направлении. Это движение совершается за счёт кинетической энергии, запасённой маховиком в процессе расширения газа. Если работа сжатия газа меньше работы расширения газа, то мы получим полезную работу, т.е. каждому значению объёма газа при сжатии должно соответствовать меньшее давление, чем при расширении. Давление газа при одном и том же объёме тем меньше, чем ниже его температура. Поэтому газ перед сжатием должен быть охлаждён. Для этого его необходимо привести в контакт с телом, имеющим более низкую температуру. Это тело называют холодильником. Нагреватель, рабочее тело и холодильник – основные части теплового двигателя. На рисунке в координатных осях p, V графически представлен процесс расширения газа (линия АВ) и сжатия до первоначального объёма (линия СD). Ответьте на вопросы:
6
Задание 3: Текст по разделу «Молекулярная физика и термодинамика», содержащий описание опыта. Задания на определение (или формулировку) гипотезы опыта, условий его проведения и выводов. Огонь из «ничего» Возьмем толстостенный сосуд, сделанный из оргстекла (рис.). Сосуд имеет диаметр порядка 40 мм и высоту около 160 мм. Вблизи дна сосуда имеется плотно закрывающееся отверстие. Внутри сосуда может перемещаться хорошо пригнанный к стенкам поршень с ручкой. Положим на дно цилиндра смоченный эфиром кусочек ваты и быстро опустим поршень вниз. Сквозь стенки прозрачного сосуда мы видим ярко вспыхнувшее пламя. Нагревание воздуха при быстром сжатии нашло применение в двигателях Дизеля. В цилиндр двигателя засасывается атмосферный воздух, и в тот момент, когда наступает его максимальное сжатие, туда вспрыскивается жидкое топливо. К этому моменту температура воздуха так велика, что горючее самовоспламеняется. Двигатели Дизеля имеют больший коэффициент полезного действия, чем обычные, но более сложны в изготовлении и эксплуатации. Сейчас все большее количество автомобилей снабжается двигателями Дизеля. Ответьте на вопросы к тексту: 1) Почему опыт не удается, если воздух в цилиндре сжимать медленно? 2) Почему для проведения опыта берется именно эфир? 3) Какой из двигателей: карбюраторный двигатель внутреннего сгорания или двигатель Дизеля более экологичный? 4) Почему у двигателей Дизеля больше КПД, чем у карбюраторных двигателей?
14 Задание 3: Текст по теме «Основы термодинамики», содержащий информацию о воздействии тепловых двигателей на окружающую среду. Задания на понимание основных факторов, вызывающих загрязнение, и выявление мер по снижению воздействия тепловых двигателей на природу. «Грязный» транспорт Число автомобилей на дорогах растёт. Всё возрастающая интенсивность движения приводит к увеличению вредных выбросов, что негативно отражается на качестве воздуха: 1т бензина, сгорая, выделяет 500-800кг вредных веществ. В атмосферу ежегодно выбрасывается порядка 5 млрд. тонн СО₂. В состав выхлопных газов входит 1 200 компонентов, в том числе оксид углерода, оксиды азота, углеводороды, альдегиды, оксиды металлов (наиболее вредный – оксид свинца), сажа и пр. Молекулы оксида углерода способны поглощать инфракрасное излучение, поэтому увеличение концентрации углекислого газа в атмосфере изменяет её прозрачность. Инфракрасное излучение, испускаемое земной поверхностью, всё в большей мере поглощается в атмосфере. Дальнейшее увеличение концентрации углекислого газа в атмосфере может привести к так называемому «парниковому эффекту». Ежегодно температура атмосферы Земли повышается на 0,05ºС. При сжигании топлива уменьшается содержание кислорода в воздухе. Более половины всех загрязнений атмосферы создаёт транспорт. Кроме оксида углерода и соединений азота при работе двигателей сгорания ежегодно в атмосферу выбрасывается 2-3 млн. тонн свинца. Содержание серы в топливе напрямую влияет на выделение в окружающую среду диоксида серы. Диоксид серы вызывает образование сульфатных частиц, которые оказываю целый ряд негативных последствий на здоровье человека. Диоксид серы также может превращаться в высококоррозийную серную кислоту («кислотный дождь»), которая, среди прочего, способна повреждать даже здания. Так как автомобильные двигатели играют решающую роль в загрязнении окружающей среды в городах, то проблема их усовершенствования является одной из наиболее важных научно-технических задач. Один из путей загрязнения атмосферы – использование дизеля вместо карбюраторных бензиновых двигателей, так как в дизельное топливо не добавляют свинец. В перспективе и другие способы уменьшения загрязнения окружающей среды, например, применение электродвигателей на транспорте или двигателей, в которых топливом является водород, создание автомобилей, работающих на солнечной энергии.
Ответьте на вопросы к тексту: 1. Какие еще тепловые двигатели, кроме двигателей внутреннего сгорания, оказывают отрицательное влияние на окружающую среду? 2. К каким последствиям приводят широкое применение тепловых машин в энергетике и транспорте? 3.К чему может привести повышение температуры Земли? 4.Что предпринимается для охраны природы? Билет 21 Задание 3: Текст по разделу «Квантовая физика и элементы астрофизики», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задания на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи имеющихся знаний. Какие они, звезды? Важнейшим источником информации о большинстве небесных объектов является их излучение. Наиболее ценные и разнообразные сведения о телах позволяет получить спектральный анализ их излучения. Этим методом можно установить качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое. Спектральный анализ основан на явлении дисперсии света. Известно, что свет распространяется в виде электромагнитных волн. Причём каждому цвету, входящему в спектр света, соответствует определённая длина электромагнитной волны. Длина волны света увеличивается от фиолетовых лучей до красных приблизительно от 0,4 до 0,7 мкм. За фиолетовыми лучами в спектре лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Ещё меньшую длину волны имеют рентгеновские лучи. За красными лучами находится область инфракрасных лучей. Они невидимы, но воспринимаются приёмниками инфракрасного излучения, например, специальными фотопластинками. Для получения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектры рассматривают, а спектрографом его фотографируют. Для спектрального анализа различных видов излучения в астрофизике используют и более сложные приборы. Достаточно протяжённые плотные газовые массы звёзд дают непрерывные сплошные спектры в виде радужных полосок. Каждый газ излучает свет строго определённых длин волн и даёт характерный для данного химического элемента линейчатый спектр. Наблюдения показывают, что звёзды порой меняют свой блеск. Изменения в состоянии газа дают изменения и в спектре данного газа. По уже составленным таблицам с перечнем линий для каждого газа и с указанием яркости каждой линии определяют количественный и качественный состав небесных светил.
Ответьте на вопросы к тексту: 1. Как определяется химический состав звезд? 2. Как определяется качественный состав звезд? 3.Можно ли считать качественный анализ по спектрам излучения точным? 4.Чем отличается спектроскоп от спектрографа?
11 Задание 3: Текст по разделу «Квантовая физика и элементы астрофизики», содержащий описание использования законов квантовой, атомной или ядерной физики в технике. Задания на понимание основных принципов, лежащих в основе работы описанного устройства. |
||
Последнее изменение этой страницы: 2018-05-30; просмотров: 801. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |