Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Расчетные формулы и расчеты




Работа № 4

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

(метод цилиндрического слоя)

 

Цель работы

Освоение одного из методов определения коэффициента теплопроводности теплоизоляционных материалов (метод цилиндрического слоя) и закрепление знаний по теории теплопроводности.

Основные положения

 Теплота является наиболее универсальной формой передачи энергии, возникающей в результате молекулярно-кинетического (теплового) движения микрочастиц - молекул, атомов, электронов. Универсальность тепловой энергии состоит в том, что любая форма энергии (механическая, химическая, электрическая, ядерная и т.п.) трансформируется, в конечном счете, либо частично, либо полностью в тепловое движение молекул (теплоту). Различные тела могут обмениваться внутренней энергией в форме теплоты, что количественно выражается первым законом термодинамики.

Теплообмен− это самопроизвольный необратимый процесс переноса теплоты в пространстве с неоднородным температурным полем.

Температурным полемназывают совокупность мгновенных значений температуры во всех точках рассматриваемого пространства. Поскольку температура − скалярная величина, то температурное поле − скалярное поле.

В общем случае перенос теплоты может вызываться неоднородностью полей других физических величин (например, диффузионный перенос теплоты за счет разности концентраций и др.). В зависимости от характера теплового движения различают следующие виды теплообмена.

Теплопроводность- молекулярный перенос теплоты в среде с неоднородным распределением температуры посредством теплового движения микрочастиц.

Конвекция− перенос теплоты в среде с неоднородным распределением температуры при движении среды.

Теплообмен излучением− теплообмен, включающий переход внутренней энергии тела (вещества) в энергию излучения, перенос излучения, преобразование энергии излучения во внутреннюю энергию другого тела (вещества).

В зависимости от времени теплообмен может быть:

стационарным, если температурное поле не зависит от времени;

нестационарным, если температурное поле меняется во времени.

Для количественного описания процесса теплообмена используют следующие величины:

Температура Т в данной точке тела, осредненная: по поверхности, по объему, по массе тела. Если соединить точки температурного поля с одинаковой температурой, то получим изотермическую поверхность. При пересечении изотермической поверхности плоскостью получим на этой плоскости семейство изотерм − линий постоянной температуры.

Перепад температур ΔΤ − разность температур между двумя точками одного тела, двумя изотермическими поверхностями, поверхностью и окружающей средой, двумя телами. Перепад температуры вдоль изотермы равен нулю. Наибольший перепад температуры происходит по направлению нормали к изотермической поверхности. Возрастание температуры по нормали к изотермической поверхности характеризуется градиентом температуры.

Средний градиент температуры − отношение перепада температур между двумя изотермическими поверхностями ΔΤ к расстоянию между ними Δn, измеренному по нормали n к этим поверхностям (рис. 1).

Истинный градиент температуры − средний градиент температуры при Δn—>0 или это есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры, численно равный первой производной температуры по этой нормали:

Рис. 1. Изотермы температурного поля, градиент температуры, тепловой поток.

а) положение нормали и направление градиента температуры и теплового потока; б) n - нормаль к изотермической поверхности дF, q – плотность  теплового потока, мощность теплового потока  дQ = q·дF.

 

Количество теплотыдQ, Дж, мощность теплового потока , Вт − количество теплоты, проходящее в единицу времени, плотность теплового потока , Вт/м2 – количество теплоты, проходящее в единицу времени через единицу площади изотермической поверхности.

Перенос теплоты теплопроводностью выражается эмпирическим законом Фурье, согласно которому вектор плотности теплового потока прямо пропорционален градиенту температуры:

= .                                                      (1)

Знак «минус» в уравнении показывает, что направление теплового потока противоположно направлению градиента температуры.

Коэффициент пропорциональности λ в уравнении характеризует способность тел проводить теплоту и называется коэффициентом теплопроводности. Количественно коэффициент теплопроводности λ – тепловой поток (Вт), проходящий через единицу поверхности (м2) при единичном градиенте температур (К/м), и имеет размерность Вт/(м·К).

 

Коэффициент теплопроводности – физическая характеристика, зависящая от химического состава и физического строения вещества, его температуры, влажности и ряда других факторов. Коэффициент теплопроводности имеет максимальные значения для чистых металлов и минимальные для газов.

Теплоизоляционные материалы. К числу теплоизоляционных материалов могут быть отнесены все материалы, обладающие низким коэффициентом теплопроводности (менее 0,25 Вт/(м·К) при t = 0 °С). Теплоизоляционные материалы могут быть неорганического происхождения (асбест, шлаки, глины, пески, минералы и т.д.), органического (шерсть, хлопок, дерево, кожа, резина, текстолит и т.д.) и смешанными, т.е. состоящими одновременно из органических и неорганических веществ. Материалы органического происхождения используют в области температур, не превышающих +150 °С. Для более высоких температур применяются материалы неорганического происхождения.

Теплопроводность твердых теплоизоляционных материалов, как правило, определяется их пористостью (т.е. общим объемом газовых включений, отнесенным к единице объема изоляционного материала), размером пор и влажностью. С ростом влажности теплопроводность увеличивается. Теплопроводность пористых тел сильно возрастает с температурой; при температурах более 1300°С тепловые изоляторы становятся проводниками тепла. Сплошные диэлектрические материалы, например, стекло, имеют более высокую теплопроводность по сравнению с пористыми материалами. Установлено также, что чем выше плотность материала, тем больше его теплопроводность.

Однослойная стенка(трубка) при λ = const. Рассмотрим цилиндрическую стенку (трубку) длиной l с внутренним r1 и внешним r2 радиусами (рис. 2). Заданы температуры T1 внутренней и T2 наружной поверхностей стенки. Условием одномерности теплового потока будет условие l >>> r2, откуда следует дq/дl = 0. Дифференциальное уравнение теплопроводности в полярных координатах при λ=const и отсутствии внутреннего источника теплоты (Qv = 0) имеет вид:

.                                               (2)

При заданных граничных условиях:

r = r1; T = T1;

r = r2; T = T2.

Получим                                  .                                        (3)

Температура цилиндрической стенки меняется по логарифмической зависимости (рис. 2).

Плотность теплового потока q через единицу площади цилиндрической поверхности будет величиной переменной:

.                                                (4)

 

 

Мощность теплового потока Q=q·F через цилиндрическую поверхность площадью F=2π·r·l (l - длина цилиндрической стенки) есть постоянная величина, равная:

.                                           (5)

Полученную формулу можно записать, используя понятие термического сопротивления:

,                                           (6)

где  − термическое сопротивление  теплопроводности цилиндрической стенки.

    Линейная плотность теплового потока (удельный тепловой поток на единицу длины стенки) ql = Q/l:

.                                    (7)

Таким образом, предлагаемый экспериментальный метод определения коэффициента теплопроводности основан на измерении:

• мощности теплового потока, проходящего через цилиндрический слой;

• перепада температур между внутренней и наружной поверхностями слоя тепловой изоляции;

• геометрических характеристик слоя тепловой изоляции.

 

Схема и описание установки

Исследуемый материал 1 (рис. 3) нанесен в виде цилиндрического слоя (d1 = 0,02 м; d2 = 0,05 м) на наружную поверхность металлической трубы 2. Длина цилиндра тепловой изоляции составляет  l = 1 м,  что значительно больше наружного диаметра.

Источником теплового потока служит электронагреватель 3, который включен в электрическую цепь через автотрансформатор 4. Для определения мощности теплового потока служат вольтметр 5 и амперметр 6. Для измерения температур на внутренней и наружной поверхностях тепловой изоляции применяются хромель-копелевые термопары 7 и 8 в комплекте с вторичными приборами 9 и 10.

 

 

Рис. 3.  Схема лабораторной установки

 

Выполнение работы

Выбрать из списка необходимый теплоизоляционный материал (по порядковому номеру 1 - 5). Затем включить установку нажатием на красную кнопку. Установить заданные преподавателем параметры 1-го режима по напряжению в диапазоне 50 – 150 В. Подождать установления стационарного режима (стационарность режима оценивается по неизменности температур t1и t2 во времени), после чего зафиксировать показания всех приборов. Результаты измерений заносятся в табл. 1. Далее установить   параметры следующего режима и продолжить измерения.

 

Расчетные формулы и расчеты

 

1. Все расчеты сводятся к вычислениям коэффициента теплопроводности по формуле:

,  Вт/(м·К)

 

2. Мощность теплового потока по формуле:

Q = I ·U,  Вт

3. Средняя температура тепловой изоляции:

, °С

4. Результаты расчетов должны быть оформлены в виде сводной табл. 2.

 

Исследуемый материал …………….                                                        Таблица 1

 

Измеряемая величина

Обоз-наче-ние

Еди-ницы изме-рения

Номера опытов

1 2 3 4 5
1 Сила тока I А   0,63
2 Напряжение U В   101
3 Температура внутренней поверхности слоя изоляции t1 °С   162,5
4 Температура наружной поверхности слоя изоляции t2 °С   51,8

 

 

Исследуемый материал ...........................                                                      Таблица 2

 

Измеряемая величина

Обоз-наче-ние

Еди-ницы изме-рения

Номера опытов

1 2 3 4 5
1 Тепловой поток Q Вт   63,6
2 Коэффициент теплопроводности исследуемого материала λ Вт/ (м·К)   0,084
3 Средняя температура исследуемого материала t °С     107,1
4 Температурный коэффициент β 1/К  

 

5. По результатам расчетов построить в соответствующем масштабе на миллиметровой бумаге график зависимости коэффициента теплопроводности от средней температуры тепловой изоляции. Пользуясь графиком, определить коэффициент β, характеризующий влияние температуры на теплопроводность материала. При обработке графического материала характер зависимости представить в виде уравнения прямой линии:

.

 

Контрольные вопросы

 

1. Сформулируйте цель лабораторной работы и поясните, как достигается поставленная цель?

2. Назовите основные узлы экспериментальной установки и укажите их назначение.

3. Какие величины следует измерять в данной работе, чтобы вычислить коэффициент теплопроводности?

4. Какова физическая сущность передачи тепла теплопроводностью?

5. Сформулируйте понятия: температурное поле, изотермическая поверхность, градиент температуры, мощность теплового потока, плотность теплового потока.

6. Покажите на схеме установки, как направлен вектор теплового потока и градиента температуры?

7. Каков физический смысл коэффициента теплопроводности, и от каких факторов он зависит?

8. Каков характер изменения температуры по толщине плоской и цилиндрической стенок?

9. Какова взаимосвязь между коэффициентом теплопроводности и наклоном температурной кривой по толщине тепловой изоляции?

10. Дайте определение понятию термического сопротивления теплопроводности.

11. Как зависит коэффициент теплопроводности различных веществ (металлов, неметаллов, жидкостей и газов) от температуры? Ответ обосновать.

12. Сформулируйте основной закон теплопроводности. В чем его сущность?

13. Каковы основные трудности тепловых расчетов при переносе тепла теплопроводностью?

14. Как влияет форма стенки на величину её термического сопротивления?

 


 


Работа № 5

 










Последнее изменение этой страницы: 2018-05-29; просмотров: 176.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...