![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие логического следования
Выведение следствий из данных посылок — широко распространенная логическая операция. Как известно, условиями истинности заключения являются истинность посылок и логическая правильность вывода. Иногда, в ходе доказательства от противного, в рассуждении допускаются заведомо ложные посылки (так называемый антитезис при косвенном доказательстве) или принимаются посылки недоказанные, однако в дальнейшем эти посылки обязательно подлежат исключению. Человек, не изучавший логику, делает эти выводы, не применяя сознательно фигур и правил умозаключения. Формальная логика знакомит с правилами различных видов умозаключений. Математическая логика дает формальный аппарат, с помощью которого в определенных частях логики можно выводить следствия из данных посылок. Используя этот аппарат, мы можем, имея некоторые данные, получить из них новые сведения, непосредственно не очевидные, но заключенные в этой информации, можем выводить логические следствия, вытекающие из данной информации. Логическое следствие из данных посылок есть высказывание, которое не может быть ложным, когда эти посылки истинны. Иными словами, некоторое выражение В есть логическое следствие из формулы А (где А и В — обозначения для различных по форме высказываний), если, заменив те конкретные элементарные высказывания, которые входят в А и В, переменными, мы получим тождественно-истинное выражение (А -> В), или закон логики. Возьмем такой пример. Нам даны три посылки: 1) «Если Иван — брат Марьи или Иван — сын Марьи, то Иван и Марья — родственники»; 2) «Иван и Марья — родственники»; 3) «Иван — не сын Марьи». Можно ли из них вывести логическое следствие, что «Иван — брат Марьи»? Многим сначала кажется, что такое логическое заключение из данных трех посылок будет истинным. Чтобы проверить это, следует составить формулу этого умозаключения. Обозначим суждение «Иван — брат Марьи» буквой (переменной) а, суждение «Иван — сын Марьи» — буквой b и суждение «Иван и Марья — родственники» — буквой с. Запишем нашу задачу символами (над чертой записаны три данные посылки, под чертой — предполагаемое заключение): Объединив три посылки в конъюнкцию «л» и присоединив к ним посредством знака « -> » предполагаемое заключение а, получим формулу: Нам нужно проверить, является ли данная формула, в которой а, b, с трактуются теперь как переменные, законом логики. Составим для этой формулы таблицу (табл. 8).
Таблица 8 В последней колонке формула в одном случае принимает значение «ложь», значит, она не является законом логики. Следовательно, из данных трех посылок не следует с необходимостью заключения, что «Иван — брат Марьи». Иван может быть племянником Марьи, или отцом Марьи, или дядей Марьи, или каким-либо другим ее родственником. Этот пример показывает, что эффективность средств математической логики видна тогда, когда средствами традиционной формальной логики трудно установить, вытекает ли какое-либо следствие из данных посылок или нет, особенно в случае, когда мы имеем дело с большим числом посылок (но не имеем еще дела с формулами, содержащими кванторы). Умозаключения делятся на дедуктивные, индуктивные и умозаключения по аналогии. В определении дедукции в логике выявляются два подхода. 1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности к новому знанию меньшей степени общности. Впервые теория дедукции в этом плане была обстоятельно разработана Аристотелем. 2. В современной математической логике дедукцией называют умозаключение, дающее достоверное (истинное) суждение. Четкая фиксация существенного различия классического и современного понимания дедукции особенно важна для решения методологических вопросов. Для различения двух смыслов дедукции можно классическое понимание обозначить термином «дедук-ция1» (сокращенно Д1), а современное — «дедукция2» (Д2).Правильно построенному дедуктивному умозаключению присущ необходимый характер логического следования заключения из данных посылок.
ДЕДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ Дедуктивные умозаключения— те умозаключения, у которых между посылками и заключением имеется отношение логического следования. Определение дедуктивного умозаключения, данного в традиционной логике (т. е. Д1), — частный случай из этого определения через логическое следование. Например, Все рыбы дышат жабрами. Все окуни — рыбы. Все окуни дышат жабрами. Здесь первая посылка «Все рыбы дышат жабрами» является общеутвердительным суждением и выражает большую степень обобщения по сравнению с заключением, также являющимся общеутвердительным суждением «Все окуни дышат жабрами». Мы строим умозаключение от признака, принадлежащего роду («рыба»), к его принадлежности к виду — «окунь», т. е. от общего класса к его частному случаю, к подклассу. Частный случай при этом не надо путать с частным суждением вида «Некоторые S есть Р» или «Некоторые S не есть Р».
Понятие правила вывода Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила вывода или правила преобразования суждений позволяют переходить от посылок (суждений) определенного вида к заключениям также определенного вида. Например, если в качестве посылок даны два суждения, представимые в виде формулы «о», то можно перейти к суждению вида «b». Это можно путем преобразований по правилу Логически правильно можно рассуждать о вопросах, относящихся к любым предметам. Логические ошибки также могут быть обнаружены в рассуждениях любого предметного содержания. Из этого не следует, разумеется, что в любых условиях и к любой предметной области должен быть применим один и тот же аппарат формально-логических правил. Сам этот аппарат должен развиваться вместе с развитием науки и практической деятельности людей. Одна из характерных черт логики состоит в том, что логика позволяет, получив некоторую информацию, знания об обстоятельствах дела, извлечь из них — точнее говоря, выявить — содержащиеся в их совокупности новые знания. Так, наблюдая движение Луны и Солнца и делая логические выводы из этих наблюдений (включая и индуктивные обобщения), люди еще в античной древности умели логически выводить из них достаточно точные предсказания о наступлении солнечных и лунных затмений. Другая характерная черта логики, органически связанная с предыдущей, состоит в том, что всякий логический вывод из посылок предполагает некоторую формализацию, т. е. может быть осуществлен по каким-нибудь общим правилам, относящимся к способам выражения знаний и способам переработки этих выражений: способам образования и преобразования выражений. В зависимости от средств, которыми мы располагаем, таких способов формализации может быть много, начиная с того, что одно и то же знание мы можем выразить на разных языках. Но какой-нибудь из языков (под «языком» не обязательно понимать звуковую речь) нам необходимо употребить. Без языка, без материального способа выражения мысли невозможно и само мышление. Формализация способов вывода состоит прежде всего в том, что каждый шаг вывода совершается только в соответствии с каким-нибудь из заранее перечисленных правил вывода, относящихся только к способам оперирования с формальными выражениями мысли с помощью материальных знаков. Среди последних имеются специфически логические, так называемые логические константы (постоянные). В математической логике — это конъюнкция, дизъюнкция, отрицание, импликация, эквиваленция, кванторы общности и существования и др. Различают правила прямого вывода и правила непрямого (косвенного) вывода. Правила прямого вывода позволяют из имеющихся истинных посылок получить истинное заключение. Правила непрямого (косвенного) вывода позволяют заключать о правомерности некоторых выводов из правомерности других выводов (эти правила будут проанализированы в § 10 настоящей главы). Типы дедуктивных умозаключений (выводов) такие: выводы, зависящие от субъектно-предикатной структуры суждений; выводы, основанные на логических связях между суждениями (выводы логики высказываний). Эти типы выводов и предстоит нам рассмотреть. Рассмотрим выводы, основанные на субъектно-предикатной структуре суждений. К формам, типичным в практике рассуждений, относятся следующие выводы из категорических суждений: 1) выводы посредством преобразования суждений; 2) категорический силлогизм, сокращенный силлогизм (энтимема), сложные (полисиллогизмы) и сложносокращенные силлогизмы (сориты и эпихейрема).
|
||
Последнее изменение этой страницы: 2018-05-10; просмотров: 369. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |