Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Железобетон и железобетонные изделия




Общие сведения

Бетон имеет недостаток, присущий всем каменным как природным, так и искусственным материалам,— он хорошо работает на сжатие, но плохо сопротивляется изгибу и растяжению. Прочность бетона при растяжении составляет всего около 1/10…1/15 его прочности на сжатие. Чтобы повысить прочность бетонных конструкций на растяжение и изгиб, в бетон укладывают стальную проволоку или стержни, называемой арматурой. Армату­ра в переводе с латинско­го означает «вооруже­ние», т. е. стальная арма­тура как бы вооружает, укрепляет бетон. Арми­рованный стальными стержнями бетон называ­ют железобетоном. Каменные конструк­ции армированные ме­таллом, были известны давно, но в современном виде железобетон поя­вился лишь во второй по­ловине XIX века, когда было освоено промышленное производство портландцемента. Патент на изобретение железобетона использования железобетона и до него (например, в 1849г. инженером Г.Е. Паукером в России и в 1845г. В. Уилкинсоном в Англии). Первоначально железобетон применялся довольно ограниченно. В настоящее время это основной конструкционный материал в жилищ­ном и промышленном строительстве.

Железобетон — это не два разнородных материала: бетон и сталь, а новый материал, в котором сталь и бетон работают совместно, помогая друг другу. Это объясняется следующим. Бетон при твердении на воздухе уменьшается в объеме, плотно охватывая арматуру. Прочность сцепления арматуры с бетоном достигает больших значений. Так, чтобы выдернуть из бетона стержень диаметром 30 мм, введенный в бетон на глубину 300 мм, требуется сила не менее 10 кН. Сцепление стали с бетоном не нарушается и при сильных перепадах температуры, так как коэффициенты теплового расширения стали и бетона почти одинако­вы. Хорошее сцепление стали с бетоном приводит к тому, что под нагрузкой эти два материала работают как одно целое.

Смысл армирования можно пояснить на элементах, работающих на изгиб (балках, ригелях). В таких элементах часть поперечного сечения элемента подвергается сжатию, а другая — растяжению. Если балку изготовить из неармированного бетона, то вследствие низкой его прочности на растяжение (1...4 МПа) уже под небольшой нагрузкой бетон в растянутой зоне растрескивается и балка разру­шится. Если же в растянутую зону ввести стальную арматуру, то она примет на себя растягивающие напряжения (прочность стали при растяжении более 200 МПа), и балка, хотя на ней могут появиться трещины, не разрушится даже при больших нагрузках. В ряде случаев армируют элементы, работающие и на сжатие (колонны, сваи), так как и на сжатие сталь в 5... 10 раз прочнее бетона.

Причиной, почему арматура принимает на себя большую часть нагрузки, является различие в модулях упругости стали 2 • 105 МПа и бетона (2...3) х 104 МПа. Из-за того, что модуль упругости стали в 10 раз выше модуля упругости бетона, при нагружении железобетонного элемента напряжения, возникающие в стали, приблизительно в 10 раз выше, чем напряжения в бетоне, т. е. в материале происходит как бы перераспределение нагрузки.

Бетон благодаря своей плотности и водонепроницаемости, с одной стороны, и щелочной реакции цементного камня в бетоне, с другой, защищает сталь от коррозии. Кроме того, бетон как сравнительно плохой проводник теплоты защищает сталь от быстрого нагрева при пожарах. Стальные конструкции при пожаре быстро нагреваются, сталь размягчается и вся конструкция начинает деформироваться даже под собственным весом. В железобетонных конструкциях стальная арма­тура защищена от огня слоем бетона. Так, опыты показали, что при температуре поверхности бетона 1000°С арматура, находящаяся на глубине 50мм, через 2 ч нагреется лишь до 500°С.

В современном строительстве все большее применение находит напряженно-армированный бетон. Как уже говорилось, прочность бетона на растяжение в 10...20 раз ниже, чем на сжатие. В железобетоне этот недостаток устраняют введением в растянутую зону арматуры. Однако вследствие малой растяжимости бетона в растянутой его зоне возникают трещины, после чего всю нагрузку воспринимает только арматура. Пока ширина трещины менее 0,1...0,2 мм (так называемые волосяные трещины), они не опасны с точки зрения сцепления арматуры с бетоном и коррозии арматуры.

При применении для армирования высокопрочных сталей полное использование их прочности сопровождается относительно большим удлинением арматуры, что приводит к сильному растрескиванию бе­тона, а это, в свою очередь,— к коррозии арматуры из-за обнажения ее поверхности. Отсюда следует, что при обычном способе армирова­ния применение высокопрочной арматуры нерационально. При арми­ровании такой арматурой применяют метод предварительного натяжения арматуры.

Сущность этого метода состоит в том, что до загрузки железобе­тонной конструкции полезной нагрузкой ее арматуру растягивают наподобие резинового жгута; упором при этом служит бетон. Естест­венно, что чем сильнее растянута арматура, тем больше будет сжат бетон. Когда же к конструкции приложена полезная нагрузка, напря­жения от нее, возникающие в растянутой зоне бетона, частично компенсируются предварительно созданными сжимающими напряже­ниями. Поэтому в растянутой зоне бетона не возникнут трещины, а предварительно напряженная арматура получит от нагрузки дополни­тельное напряжение и ее высокая прочность будет реализована в большой степени.

В настоящее время применяют два способа получения напряжен­но-армированного бетона. Один из них заключается в том, что арматуру натягивают и закрепляют на специальных анкерах, а затем укладывают бетон. После того как бетон достаточно затвердеет, арматуру освобож­дают и она, сжимаясь, сжимает бетон. Другой способ: в бетоне оставляют специальные каналы для напрягаемой арматуры. После затвердевания бетона арматуру вводят в каналы и натягивают, исполь­зуя в качестве опоры затвердевший бетон. При этом в бетоне возникают сжимающие напряжения. После натяжения арматуры каналы запол­няют цементным раствором.

В предварительно напряженных железобетонных конструкциях более полно используется прочность стали и бетона, поэтому уменьшается масса изделий. Кроме того, предварительное обжатие бетона, препятствуя образованию трещин, повышает его долговеч­ность.

Благодаря универсальности и комплексу ценных свойств железо­бетон на тяжелом и легком бетоне используют для строительства всех типов зданий и инженерных сооружений. Так, массовое строительство жилых зданий осуществляется из сборного железобетона, причем из него выполняют все элементы здания. В многоэтажных кирпичных зданиях фундаменты и перекрытия — железобетонные. Промышлен­ные здания и инженерные сооружения в основном возводят из желе­зобетона.

В зависимости от способа изготовления железобетонные конструк­ции могут быть монолитными или сборными.

Монолитный железобетон

Монолитным называют железобетон, изготовляемый непосредст­венно на строительной площадке. На месте возведения конструкции устанавливают опалубку. Назначение опалубки — при­дать бетонной смеси при ее укладке форму будущей конструкции. Опалубку выполняют из дерева, фанеры, стали или различных их комбинаций. Обычно применяют разборно-переставную опалубку из мелких или крупных щитов.

Для возведения высоких сооружений (резервуаров, труб, башен) применяют скользящую или подъемно-переставную опалубку. Когда бетон, уложенный в скользящую опалубку, достаточно затвердеет, опалубку вместе с рабочими подмостями двигают вверх и цикл повто­ряют. Такая опалубка была использована при строительстве Останкин­ской телевизионной башни.

В опалубку укладывают арматуру, а затем бетонную смесь. Бетонную смесь уплотняют глубинными или поверхностными вибра­торами, навешиваемыми на опалубку.

Бетон после укладки первые 7... 10 дн необходимо защищать от высыхания, а зимой — от замерзания. В противном случае мы не получим требуемой прочности бетона. Бетон твердеет обычно естест­венным путем, зимой возможен его подогрев.

Опалубку снимают по достижении бетоном достаточной прочно­сти, чаще всего через 7...10 дн.

В последние годы монолитный железобетон применяют все шире (в начальный период своего развития железобетон в строительстве использовали только в монолитном варианте). Из монолитного бетона возводят здания и сооружения, не поддающиеся разделению на одно­типные элементы, при особенно больших или динамических нагрузках на конструкции зданий и сооружений (например, фундаменты и каркасы многоэтажных жилых и промышленных зданий, особенно в сейсмических районах), гидротехнические сооружения и т. п. С каждым годом расширяется строительство из монолитного бетона городских и сельских жилых зданий. Особенно эффективно такое строительство в случае применения специально изготовленной метал­лической опалубки многократного использования, что позволяет до­биться большой точности изготовления строительных конструкций при низких трудозатратах.

Для монолитного строительства используют тяжелые и легкие бетоны на быстротвердеющих цементах. При правильной органи­зации труда скорость строительства из монолитного бетона не уступает скорости монтажа из сборных элементов.

За последние годы в городах России построено много нестандарт­ных сооружений из монолитного бетона, в том числе и такие уникаль­ные, как храм Христа Спасителя, подземный торговый комплекс на Манежной площади в Москве и др.


Сборный железобетон

Сборные железобетонные изделия и конструкции (сборный желе­зобетон) представляют собой крупноразмерные железобетонные эле­менты, изготовляемые на заводе или полигоне домостроительного комбината. Основное преимущество таких конструкций — высокоме­ханизированные и автоматизированные методы их изготовления; на строительной площадке эти элементы только монтируют, что резко сокращает сроки строительства, повышает производительность труда и позволяет широко применять новые эффективные материалы (легкие и ячеистые бетоны, отделочную керамику, пластмассы и т. п.).

Развитие сборного строительства нашло свое выражение в органи­зации домостроительных комбинатов (ДСК). ДСК выпускают все необходимые для строительства здания железобетонные элементы, транспортируют их на стройку и осуществляют монтаж и окончатель­ную отделку здания. Главнейшее звено ДСК — заводы, выпускающие железобетонные конструкции и детали.

Основные операции при производстве железобетонных изделий:приготовление бетонной смеси, изготовление арматуры, армирование и формование изделий и их ускоренное твердение.

Бетонную смесь приготовляют в бетоносмесительном цехе завода, арматуру — в арматурном цехе. Поступающую на завод арматурную сталь (в бухтах или прутках) на специальных станках очищают от ржавчины, правят и режут на стержни заданной длины. Необходимую форму стержням придают на гибочных станках. Отдельные стержни и проволоку соединяют в сетки и каркасы контактной сваркой на станках-автоматах. Готовые сетки и каркасы передают в формовочный цех.

Напрягаемую арматуру натягивают на анкеры форм с помощью специальных механизмов или реже методом термического натяжения.

Перед укладкой арматуры и бетона формы очищают и покрывают смазочным материалом, препятствующим сцеплению бетона с метал­лом форм. Бетонная смесь из бетоносмесигельного цеха поступает в приемный бункер бетоноукладчика, который подает ее в форму и разравнивает.

Уплотняют бетонную смесь на заводах центрифугированием, виб­ропрессованием, прокатом, но чаще на виброплощадках большой грузоподъемности (до 5...10 т) с электромеханическим или электромаг­нитным приводом. Пустоты в изделиях формуют с помощью вибро­вкладышей.

Для ускорения твердения бетона его подвергают тепловлажностной обработке: нагреву до температуры 80... 180° С таким образом, чтобы в бетоне сохранялась вода в жидком состоянии, необходимая для твердения цемента.

Применяют следующие виды тепловлажностной обработки: пропаривание при нормальном давлении и температуре 80...95°С; контак­тный нагрев и электроподогрев до 100° С; запаривание в автоклавах при давлении 0,9... 1,6 МПа (оно необходимо, чтобы вода в бетоне оставалась жидкой) и температуре 175...200° С.

Наиболее распространено пропаривание при нормальном давлении в камерах непрерывного или периодического действия. Изделия на­гревают насыщенным паром.

Камеры непрерывного действия представляют собой туннель, в котором изделия в формах, установленных на вагонетках, проходят последовательно зоны подогрева, изотермичесокй выдержки и охлаж­дения.

В камеры периодического действия изделия загружают краном и устанавливают в несколько рядов по высоте. Затем камеру закрывают крышкой и подают насыщенный пар. Продолжительность пропаривания 10... 16 ч. За это время бетон набирает не менее 70 % марочной прочности.

После извлечения из форм изделия проходят технический контроль на соответствие требованиям ГОСТ или ТУ.

Изделия, удовлетворяющие требованиям стандарта, маркируют несмываемой краской. В маркировке указывают паспортный номер изделия, его индекс, марку завода-изготовителя и пр. На каждую партию изделий составляют паспорт в двух экземплярах: для потреби­теля и завода-изготовителя.

Железобетонные изделия изготовляют способами: стендовым, кассетным, поточно-аг­регатным, конвейерным и вибропрокатным.

При стендовом способе изделия получают в неподвижных формах (на стенде). Механизмы (бетоноукладчики, вибраторы и др.) поочеред­но подходят к стенду для выполнения необходимых операций. Этим способом изготовляют, как правило, крупногабаритные изделия (фер­мы, колонны, балки) на полигонах.

Касетный способ — вариант стендового способа, основой которого является формование изделий в стационарно установленных кассетах, состоящих из нескольких вертикальных металлических форм-отсеков. В форму закладывают арматурный каркас и заполняют ее бетонной смесью. Тепловую обработку производят контактным обогревом через стенки форм. После тепловой обработки стенки форм раздвигают и изделия вынимают мостовым краном. Кассетным способом изготов­ляют плоские изделия (панели перекрытий, стеновые панели и т. п.).

При поточно-агрегатном способе формы с изделиями перемешаются от одного технологического агрегата к другому краном, а при конвей­ерном они стоят на вагонетках, движущихся по рельсовому пути. При конвейерном способе тепловлажностную обработку осуществляют не­прерывном методом. Конвейерный способ - высокопроизводительный, но на каждой нитке конвейера можно выпускать изделие только одного типоразмера.

При вибропрокатном способе процессы получения железобетонного изделия происходят на одной установке непрерывного действия — вибропрокатном стане. Вибропрокатный стан — это конвейер из сталь­ной обрезиненной формующей ленты, движущейся вдоль постов ук­ладки арматуры и бетона, виброуплотнения бетона и контактной тепловой обработки. Вибропрокатным способом получают плиты пе­рекрытий, легкобетонные панели наружных стен, перегородочные панели. Этот способ самый производительный, но переход с выпуска одного вида изделий на другой затруднен, так как связан с полной переоснасткой стана.










Последнее изменение этой страницы: 2018-05-10; просмотров: 185.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...