Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Характеристика морфологических признаков, состава и свойств наиболее распространенных почв




 

3.2.1 Почвенно-географическое районирование региона

Для исследования был выбран Старомайнский район, который относится к Заволжскому террасово – аллювиальному низменно – равнинному почвенно-географическому району Предуральской провинции; входит в равнинно-волнистый суглинистый выщелочено-черноземный и лугово-черноземный округ.

 

3.2.2 Систематика почв. Морфологические признаки почв

В данном пункте рассмотрена как систематика почв, так и характеристика морфологических признаков, состава и свойств наиболее распространенных почв колхоза «Волга» Старомайнского района.

Почвы подразделяются на типы, подтипы, роды, виды и разновидности. Под типом понимают почвы, сформировавшиеся в одинаковых природных условиях, то есть имеющие сходство почвообразовательного процесса, обладающие общими свойствами. Основными типами почв являются: дерново-подзолистые, болотные, серые лесные, черноземы, каштановые, сероземы, красноземы, пойменные.

Подтип объединяет различные почвы в пределах одного типа, несколько отличающиеся по почвообразованию, внешнему виду и свойствам. Например, среди серых лесных почв выделяются светло-серые, серые, темно-серые; в черноземах-черноземы оподзоленные, выщелоченные, типичные, обыкновенные, южные.

Род почв отражает особенности свойств в пределах подтипа, связанные главным образом с химизмом почвообразующих пород или грунтовых вод, например черноземы солонцеватые, осолоделые. Вид почвы отражает степень выраженности почвообразовательного процесса, например слабоподзолистые, среднеподзолистые, сильноподзолистые почвы. Разновидность почвы отражает ее механический состав- песчаная, супесчаная, суглинистая и т.д.

Рассмотрим систематику почв Старомайнского района.

Серые лесные почвы (Л) распространены преимущественно в северной асти лесостепной зоны. Характеризуются следующим строением профиля: А0 – А1 – А1А2 – ВА2 – В (В1, В2) – ВС – С.

Светло-серые лесные почвы (Л1) по морфологическим признакам и свойствам близки к дерново-подзолистым. Горизонт А1 небольшой мощности (15 – 20 см и меньше), светло-серый, со слабовыраженной комковато-пластичной структурой, на пахотных почвах Апах бесструктурный и распылен. Переходный горизонт (А1А2) имеет четкие признаки оподзоленности – белесоватый оттенок, чешуйчатую, пластинчатую или плитчато-ореховатую структуру с обильной кремнеземистой присыпкой.

Горизонт ВА2 хорошо выражен, с отдельными гумусовыми затеками, по граням ореховато-призматической или ореховато-плитчатой структуры, кремнеземистая присыпка. Иллювиальный горизонт В сильно уплотнен, имеет отчетливую ореховато-призматическую структуру с кремнеземистой присыпкой и лакировкой по граням. Обычно в конце второго метра профиля в породе выделение карбонатов.

Серые лесные почвы (Л2) отличаются более мощным гумусовым горизонтом (до 25 – 30 см), на пахотных почвах часть его обычно еще выделяется ниже Апах. Оподзоленный горизонт (А1А2) интенсивнее, чем у светло-серых почв, покрашен гумусом, ореховатой структуры с заметной кремнеземистой присыпкой. Горизонт ВА2 иногда отсутствует. Иллювиальный горизонт имеет обильную кремнеземистую присыпку и гумусовые примазки на гранях ореховато-призматических структурных отдельностей. Обычно растянут и подразделяется на В1, В2 и В/С.

Темно-серые лесные почвы (Л3) по признакам и свойствам близки к оподзоленным черноземам. Гумусовый горизонт А1 более мощный (до 30 – 35 см), темно-серый, комковатой структуры. Горизонт А1А2 интенсивно окрашен гумусом, ореховатой структуры с кремнеземистой присыпкой на гранях. Горизонт ВА2 отсутствует.

Иллювиальный горизонт выделяется темно-бурой окраской, заметно уплотнен, отчетливо выражена ореховато-призматическая структура. Белесый налет кремнеземистой присыпки необильный, книзу уменьшается. На глубине 150-200 см в породе выделяются карбонаты.

Черноземные почвы сформировались под степной и разнотравно-степной растительностью и характеризуются большими запасами органического вещества, что выражается в наличии мощного (в среднем 50 – 100 см) гумусового слоя с высоким содержанием гумуса (4 – 10% и более в верхнем горизонте).

Черноземы оподзоленные (Чоп) характеризуются наличием кремнеземистой присыпки в гумусовом слое. Обычно она в виде белесоватого налета как бы припудривает структурные отдельности в горизонте В1, но при более высокой оподзоленности белесый налет бывает в горизонте А. В этом случае обильная кремнеземистая присыпка придает гумусовому горизонту чернозема седовато-пепельный оттенок.

Гумусовый профиль темно-серый в горизонте А, заметно светлеет в горизонте В1. Мощность гумусового слоя (А+В1) колеблется от 70 – 100 см (теплая южноевропейская фация) до 30 – 50 см (холодная западная и среднесибирская фации). Горизонт карбонатов и линия вскипания залегают значительно ниже границы гумусового слоя (на глубине 1,3 – 1,5 м). Поэтому в оподзоленных черноземах под гумусовым слоем выделяется иллювиальный уплотненный выщелоченный горизонт, имеющий ореховатую или призматическую структуру, с отчетливой лакировкой, гумусовыми примазками и кремнеземистой присыпкой на гранях. Постепенно эти признаки ослабевают, и горизонт переходит в породу, содержащую карбонаты в виде известковых трубочек, журавчиков или дутиков.

Слабооподзоленные черноземы имеют кремнеземистую присыпку в нижней части горизонта В1 и в горизонте В2. У среднеоподзоленных черноземов присыпка распространена по всему гумусовуму слою, а также в нижележащих горизонтах (В2 и В3).

Черноземы выщелоченные (Чв) в отличие от оподзоленных не имеют кремнеземистой присыпки в гумусовом слое. Главная их морфолологическая особенность – отсутствие свободных карбонатов в гумусовом слое. Под ним залегает выщелоченный от карбонатов горизонт В2 различной мощности. Поэтому линия вскипания проходит ниже границы горизонта В1.

Горизонт А обычно имеет темно-серую или черную окраску, отчетливо выраженную (особенно в подпахотном слое) зернистую или зернисто-комковатую структуру. Мощность его колеблется от 30 до 50 см. Переход в горизонт В1 постепенный и выявляется по буроватому или коричневому оттенку в окраске, который заметно усиливается книзу. Структура комковатая. Размер комочков книзу постепенно увеличивается.

Мощность гумусового слоя (А+В1) колеблется от 80 – 150 см (теплая фация) до 30 – 45 см (восточносибирская фация). Характерный для этого подтипа черноземов выщелоченный горизонт В2 имеет буроватую окраску, гумусовые затеки и примазки по граням ореховато-призматической или призматической структуры. Переход в горизонт В3(ВС) или С ясный, и граница выделяется скоплением карбонатов в виде изестковой плесени, прожилок, которые определяют более светлую по сравнению с выщелоченным горизонтом В2 окраску этого горизонта. Черноземы типичные (Чт) отличаются большой мощностью гумусового слоя (более 80 см) и содержанием карбонатов в гумусовых горизонтах в форме мицелия или известковых трубочек. Карбонаты появляются чаще всего с глубины 60 – 70 см. Горизонт А темно-серый, иногда черный, с хорошо выраженной комковато-зернистой или зернистой структурой.

Поскольку типичные черноземы имеют сильно растянутый гумусовый профиль, то для более детальной характеристики строения их гумусового слоя ниже горизонта А выделяют два переходных по окраске и структуре горизонта – АВ1 и В1. Горизонт АВ1 темно-серый, со слабым буроватым оттенком книзу, а горизонт В1 отличается отчетливым бурым оттенком. В нижней части горизонта АВ1 или чаще всего в горизонте В1 видны выцветы карбонатов в форме мицелия. Мощность гумусового слоя (А+АВ11) колеблется от 100 – 190 см (теплая фация) до 40 – 70 см (холодная фация). Под горизонтом В1 довольно глубоко заходят отдельные гумусовые пятна и затеки. Горизонт В2(ВС) и порода С содержат карбонаты в форме мицелия, известковых трубочек и журавчиков. Типичные черноземы делят на роды с учетом глубины залегания карбонатов. В этой связи выделяют: черноземы типичные (обычные) – вскипание в пределах гумусового слоя (горизонт АВ1 или В1); черноземы типичные с пониженным вскипанием – вскипающие ниже границы гумусового слоя; черноземы типичные карбонатные – вскипающие с поверхности или в пределах первых 20 см. Выделяется также род типичных осолоделых черноземов. По мощности гумусового слоя среди типичных осолоделых преобладают мощные и сверхмощные виды.

Лугово-черноземные почвы (Чл) распространены на пониженных элементах рельефа (лощины, шлейфы склонов и т.п.), где наблюдаются лучшие условия увлажнения и грунтовые воды залегают выше 5 м.

Их профиль подразделяется на такие же горизонты, что у черноземов, но имеет ряд специфических признаков: более интенсивную окраску (обычно черную) верхней части гумусового слоя при большей его мощности, чем у соответствующих подтипов черноземов, оглеенность нижних горизонтов. Тип лугово-черноземных почв разделяется на два подтипа: лугово-черноземные (грунтовые воды на глубине 2 – 5 м) и черноземно-луговые (грунтовые воды на глубине 1,5 – 3 м и выше). Деление на роды и виды аналогично черноземам. Лугово-черноземные почвы, за исключением солонцеватых и солончаковатых, высокоплодородны и повышенно увлажнены по сравнению с зональными черноземами. Наиболее характерны для пойм Старомайнского района аллювиальные дерновые почвы. Аллювиальные дерновые почвы формируются на возвышенных элементах рельефа поймы, при глубоком залегании грунтовых вод и преимущественно на аллювии легкого механического состава, часто слоистом. Они расположены главным образом в прирусловой части поймы, а также по гривам центральной поймы. Почвообразовательный процесс развивается без влияния грунтовых вод, в условиях господства окислительной обстановки, на бедном, чаще всего песчаном или супесчаном аллювии. Поэтому гумусовый профиль в таких почвах обычно маломощен и слабо выражен, с невысоким содержанием гумуса и азота.

 

3.2.3 Гранулометрический состав

 

Таблица С Гранулометрический состав почв колхоза «Волга»:

Механический состав

Количество частиц физической глины < 0,901 мм (в %)

Подзолистые почвы Степные и пустынные почвы
Глина тяжелая >80 >80
Средняя 65-80 75-80
Легкая 50-65 60-75
Суглинок тяжелый 40-50 45-60
Средний 30-40 30-45
Легкий 20-30 20-30
Супесь 10-20 10-20
Песок связный 5-20 5-20
Рыхлый <5 <5

 

Таблица: Почвы в данном хозяйстве имеют хорошую агрономическую ценность:

Горизонт, глубина, см

Размер фракций, мм

>10 10-7 7-5 5-3 3-2 2-1 1-0,5 0,5-0,25 <0,25

Аmax

0 – 25

72,5 28,3 33,3 51,5 89,2 89,2 29,3 62,9 43,8

Содержание в %

14,5 5,6 6,6 10,3 17,8 17,8 5,8 12,5 8,75

 

Наиболее распространенными почвами колхоза «Волга» являются дерново-подзолистые почвы, легко- и среднесуглинистые. Свойства этих почв в значительной мере зависят от степени выраженности каждого из почвообразовательных процессов.

Легко - и среднесиглинистые почвы являются лучшими почвами по своему механическому составу. В них наиболее благоприятно, по сравнению с легкими и тяжелыми почвами, складываются сочетания теплового, водного, воздушного и питательного режимов.

В колхозе «Волга» также встречаются почвы супесчаных и среднепесчаных типов. Эти почвы быстрее других прогреваются весной, поэтому их называют теплыми. Они сравнительно легко поддаются обработке сельскохозяйственными орудиями, поэтому их называют легкими. Эти почвы имеют хороший воздушный режим, так как благодаря крупным порам здесь энергично происходит газообмен между почвенным и атмосферным воздухом. Песчаные почвы обладают хорошо выраженной водопроницаемостью. Разложение послеуборочных остатков и органических удобрений в пахотном слое таких почв при поступлении атмосферных осадков происходит быстро, при этом азот и элементы зольного питания в доступных растениям формах появляются в почве в большом количестве. Легкие почвы, по сравнению с тяжелыми, меньше подвергаются процессам водной эрозии, так как в последствие более полного впитывания влаги поверхностный сток ее выражен в незначительной степени.

Но легкие почвы обладают и рядом отрицательных свойств. Содержание воды в них неустойчиво и зависит от периодичности поступления атмосферных осадков. Благодаря хорошей водопроницаемости и незначительной влагоемкости легких почв атмосферные осадки не задерживаются в пахотном слое, а фильтруются вниз по профилю. Поэтому здесь, где в течение года выпадает 600-700 мм осадков, на легких почвах растения часто испытывают недостаток влаги.

В супесчаных почвах разложение послеуборочных остатков и органических удобрений происходит быстро с освобождением значительного количества азота и элементов зольного питания. Но они не закрепляются в почве, так как поглотительная способность супесей мала. Поэтому, элементы питания, не усвоенные растениями, вымываются в нижнюю часть профиля и в грунтовые воды. При систематическом внесении больших доз минеральных удобрений подобный процесс может вызвать непроизводительные потери элементов питания и загрязнения гидросферы. Ярко выраженный процесс минерализации органических веществ исключает, кроме того, интенсивное развитие процессов гумификации и накопления гумуса. Поэтому легкие почвы и менее гумусированы по сравнению со средними и тяжелыми почвами по механическому составу.

Гумусовое состояние почв

Гумус – сложный динамический комплекс органических соединений, образующихся при разложении и гумификации органических остатков в почве. Гумусовый горизонт в почвах колхоза «Волга» имеет мощность от 45 до 60 см. содержание гумуса колеблется в пределах 2,9 – 6,0%.

По данным агрохимического обследования почв видно, что содержание подвижных форм фосфора и обменного калия увеличивается, содержание гумуса уменьшается. За последние 5 лет в хозяйстве вносилось на 1 га пашни 4,1 тонны органических удобрений в действующем веществе. В целях поддержания баланса гумуса на существующем уровне в хозяйстве необходимо вносить на 1 га пашни 5,3 тонн органических удобрений и 1,56 центнера минеральных удобрений в действующем веществе.

 

Таблица 2. Показатели плодородия почв (по данным ГСАС «Ульяновская» на 2005 год):

Типы, подтипы почв

Площадь, га

Гранулометрический состав

Гумус

% т/га
Чернозем оподзоленный 1635 тяжелосуглинистый 5,0 1,5
Серые лесные 331 супесчаный 4,0 1,2
Дерново-подзолистые 433 тяжелосуглинистый 3,7 1,11

 

3.2.5 Физико-химические и агрохимические свойства почв

Рассмотрим физико-химические и агрохимические свойства почв колхоза «Волга».

 

Таблица 3. Агрохимические свойства почв (по данным ГСАС «Ульяновская» на 2005 год):

Типы, подтипы почв

Площадь, га

Гранулометрический состав

Содержание, мг/100г

рН
РО КО  
Чернозем оподзоленный 1635 тяжелосуглинистый 19,9 22,2 6,2
Серые лесные 331 Супесчаный 17,2 20,3 4,9
Дерново-подзолистые 433 тяжелосуглинистый 12,3 16,7 5,1

Таким образом, почвы хозяйства по кислотности относятся в основном к нейтральным почвам. Площадь нейтральных почв 1635 га со степенью кислотности более 6. Площадь почв близких к нейтральным занимает 433 га со степенью кислотности 5 – 6. Площадь почв со слабокислой реакцией занимает площадь 331 га. Наиболее благоприятная реакция среды для усвоения растениями фосфат-ионов рН 6 – 6,5. Большое количество почв хозяйства с нейтральной средой благоприятствуют этому.

Поглотительной способностью почвы называется свойство задерживать или поглощать различные вещества, взаимодействующие и соприкасающиеся с ее твердой фазой. Почва способна задерживать или поглощать газы, различные соединения из растворов, минеральные или органические частицы, микроорганизмы и суспензии. Почвой энергично поглощаются и сохраняются главные элементы питания растений – K, N, Ca, Mg, P.

Механическая поглотительная способность – свойство почвы механически задерживать взвешенные в воде вещества, обусловлена механическим составом, структурой, сложением, пористостью и капиллярностью почвы. Почва как фильтр, способна закреплять фильтрующиеся через нее частицы в зависимости от их размеров, диаметров капиллярных и расположения их. Эта способность используется при заилении песчаных почв и очистке бытовых и технических сточных вод. Физическая поглотительная способность – свойство почвы поглощать из раствора молекулы электролитов, продукты гидролитического расщепления солей слабых кислот и сильных оснований, а также коллоиды при их коагуляции. При физическом поглощении происходит аполярная адсорбция (сгущение молекул на поверхности раздела двух фаз – твердой и жидкой, твердой и газообразной), определяемая наличием ненасыщенной энергии на поверхности почвенных частиц. Эта энергия тем больше, чем тоньше механический состав почвы. Поэтому физическая поглотительная способность выше у суглинистых почв и слабее у песчаных. Физическое поглощение защищает водорастворимые соединения от вымывания. Такое поглощение нередко сопровождается коагуляцией коллоидных веществ под воздействием электролитов, что также предохраняет от вымывания водорастворимые соединения. Вот почему химическими мелиорациями можно способствовать коагуляции коллоидов и противодействовать пептизации их.

Химическая поглотительная способность – свойство почвы удерживать ионы в результате образования нерастворимых или труднорастворимых солей. Она заключается в выпадении из почвенных растворов осадков и закрепления их в почве. При взаимодействии растворимых и среднерастворимых солей возникают труднорастворимые соли, которые и присоединяются к твердой фазе почвы.

Например:

Na2СО3+СаSO = СаСО3+Na2SO4;

3CаSO4+2Na3РО4= Са(РО4)2+ 3Na2SO4.

 

Легкорастворимые соли, например, Na2SO4, уносятся из сферы взаимодействия. Химическое поглощение происходит в том случае, если анион раствора дает нерастворимое соединение с ионами, находящимися на поверхности твердых частиц почвы. Физико-химическая, или обменная, поглотительная способность – свойство почвы обменивать некоторую часть катионов и в меньшей степени анионов из соприкасающихся растворов. Здесь наблюдается физическое и химическое поглощение. Происходит эквивалентный обмен катиононами. Катионы из раствора переходят в слой компенсирующих ионов мицелл почвенных коллоидов, а катионы из слоя компенсирующих ионов – в раствор. Изменяя искусственно реакцию почвенных растворов, можно направленно воздействовать на емкость поглощения, а из необменного состояния катионы перевести в обменные. Перевод в необменное состояние катионов совершается при периодическом высушивании почвы, что объясняется старением и частичной кристаллизацией гелей коллоидов.

Биологическая поглотительная способность связана с жизнедеятельностью организмов почвы (главным образом микрофлоры), которые усваивают и закрепляют в своем теле различные вещества, а при отмирании обогащают ими почву. Растворимые соединения, поступающие из раствора, а также вещества, ассимилируемые организмами из твердой и газообразной фазы почвы, переходят в нерастворимую форму в теле организмов. Благодаря такому поглощению в почве аккумулируются необходимые для растений элементы зольного и азотного питания. Это избирательная поглотительная способность по отношению к элементам питания растений. Особенно большое значение имеет для улучшения бедных питательными веществами легкопромываемых почв. Почва задерживает бактерии и адсорбирует их как физическая среда. Это свойство более выражено у суглинистых и меньше у песчаных почв. Адсорбирующая способность почв различна по отношению к разным видам бактерий. Поглотительная способность почв сильнее проявляется в условиях оптимальной влажности почв, когда накапливается перегной и элементы пищи растений и повышается плодородие почв.

Химические свойства почвы определяются процессами, происходящими в основном между ее твердой и жидкой фазами. По закону действующих масс в почве образуются и поступают в раствор различные вещества, в ней устанавливается подвижное равновесие между твердой частью и почвенным раствором. При уменьшении концентрации такого раствора часть веществ поступает в него из твердой фазы почвы и, наоборот, при увеличении концентрации часть веществ выпадает из раствора, присоединяясь к твердой фазе почвы.

В почвенной воде растворимы различные соли и кислоты, которые представляют так называемыйпочвенный раствор. Он образуется в процессе почвообразования в течение длительного времени в результате движения воды в почве и смачивания ее. Соли растворяются под действием кислот, коалинизации, окислительно-восстановительных процессов, гидролиза веществ и т.д. Почвенный раствор по составу и концентрации определяется взаимодействием почвы, воды и организмов, которое состоит в растворении минеральных и органических веществ, пептизации, коагуляции и обмене ионами растворов с почвенными коллоидами. Реакция почвенного раствора создается при взаимодействии почвы с водой или растворами солей, характеризуется концентрацией водородных и гидроксильных ионов. Реакция может быть кислой, щелочной или нейтральной. В последнем случае концентрация ионов Н+ и ОН- одинакова. Реакция почвенного раствора выражается символом рН – десятичным логарифмом с обратным знаком, показывающим степень концентрации Н в почвенном растворе, или количеством Н-иона в листе раствора. Различают активную (актуальную) и потенциальную кислотность. Активная кислотность возникает за счет слабых кислот (главным образом углекислоты, органических кислот), а также кислых солей и минеральных кислот, особенно H2SO4. Эта кислотность обнаруживается действием воды на почву, поглощающий коллоидный комплекс которой не насыщен основаниями.

Способность почвенной суспензии противостоять изменению ее активной реакции (рН) при внесении в почву кислот или щелочей называетсябуферным действием.В следствие буферности почва обладает относительно устойчивой реакцией почвенного раствора. Буферное действие присуще твердой фазе почвы и зависит от ее химического, коллоидного и механического состава.

Физические свойства почвы разделяются на основные (объемный и удельный вес, пористость, пластичность, липкость, связность, твердость, спелость) и функциональные (водные, воздушные и тепловые). К последним относят способность поглощать (впитывать) выпадающие осадки или оросительную воду, пропускать, сохранять или удерживать ее, подавать из глубоких горизонтов к поверхности, снабжать ею растения и т.д. Вода значительно изменяет физические, химические, тепловые и воздушные свойства почвы. Физические свойства почвы, тесно связанные с другими ее свойствами, изменяются в соответствии с ходом почвообразования, а с изменением свойств изменяется и почвообразование.

Существуют понятия объемного и удельного веса. Объемный вес – вес единицы объема абсолютно сухой почвы в естественном сложении (с порами), или вес в граммах 1 см3 сухой почвы. Он определяется взвешиванием образца с ненарушенным строем, взятого в строго определенном объеме. Удельный вес– вес в граммах 1 см3 твердой массы почвы без пор. Удельным весом почвы называют отношение веса твердой ее фазы определенного объема к весу воды при 40оС в том же объеме.

Суммарный объем пор между частицами твердой фазы (объем всех промежутков), выраженный отношением объема пор к объему почвы называется пористостью, или скважностью. В отличие от пористого сложения почвы или от пористости горных пород или других тел, скважность почвы нередко называют порозностью.

Размер пор, форма и сочетание их весьма разнообразны, так как они являются производными от случайного расположения полидисперсных частиц механического состава – элементарных почвенных частиц, микроагрегатов и структурных отдельностей, крайне различных по размерам, форме и характеру их поверхностей. Эти промежутки по форме и размерам сильно изменяются во времени в зависимости от происходящих в почве физико-механических и биологических процессов. Вследствие частичной или полной закупорки некоторые поры исчезают, другие возникают вновь. В почвах возможна уплотненная укладка, если промежутки первого порядка будут заняты частицами или агрегатами, диаметр которых отвечает размерам пор.

Пластичностью почвы называется способность ее в определенном интервале влажности под воздействием внешних сил изменять свою форму с сохранением новой приданной формы (способность к формованию и лепке). Это свойство обуславливается образованием гидротированных плотных оболочек вокруг мельчайших частичек почвы. Наибольшую пластичность имеют так называемые жирные, или тяжелые, глины, состоящие из тонких чешуйчатых частичек, сложенных в форме плотных штабелей. Липкость (клейкость) – способность почвы во влажном состоянии прилипать к вводимым в нее предметам или соприкасающимся с нею. Она зависит от влажности, механического и химического состава и других свойств почвы. Начинает проявляться в структурной почве при ее влажности 60–70% и в бесструктурной – при 40–60% полной влагоемкости. Затем липкость возрастает до степени влажности, соответствующей нижнему пределу текучести, а при последующем повышении влажности липкость уменьшается и при переходе почвы в текущее состояние исчезает. Липкость определяется количеством влаги, соответствующим моменту, когда почвенная масса при некоторой наименьшей влажности начинает прилипать. Связность – это свойство взаимного сцепления или притягивающего действия между почвенными частицами, которое измеряется силой, удерживающей частицы одну около другой. Оно обуславливается проявлением адсорбции, когезии, цементирующим действием различных веществ (глина, перегной, известь), степенью увлажнения почвы и другими факторами.

Твердостью (плотностью) почвы называется способность ее оказывать сопротивление проникновению в нее твердых режущих тел род давлением. Твердость в поле обычно устанавливают визуально, различая следующие степени плотности почвы:

а) рыхлая – осыпается со стенок разреза от прикосновения ножа, легко проникающего в почву;

б) рыхловатая – осыпается меньше предыдущей, почвенный разрез без затруднения копается лопатой, нож хорошо проникает в почву;

в) уплотненная (плотноватая) – удовлетворительно режется лопатой и ножом, нож с трудом входит в почву;

г) твердая – с трудом режется лопатой; стенки разреза очень плотные, нож с трудом входит в почву;

д) очень твердая – слабо поддается действию лопаты. Нож лишь оставляет черту, не проникая в почву. Эта степень твердости характерна для иллювиальных горизонтов сильносолонцеватых почв, солонцов и в ряде случаев подзолов (ортштейны, ортзанды) и пр.

Почвенная корка и плужная подошва. На поверхности суглинистой и глинистой почвы после увлажнения очень часто образуется заплывший верхний слой пахотного горизонта, изрезанный вертикальными трещинами, называемыйпочвенной коркой. Она, увеличивая потери влаги из пашни, снижает полевую всхожесть, ухудшает условия роста и развития растений и понижает урожай всех культур. Ниже границ пахотного горизонта суглинистой и глинистой почвы (Ап) нередко наблюдается уплотненный подпахотный горизонт, называемыйплужной, или пахотной подошвой. Для ее уничтожения необходимо менять глубину вспашки и разрушать подошву почвоуглубителем, известкованием кислых и гипсованием щелочных почв и пр.

 

3.2.6 Водно-физические свойства почв

 

В данном пункте следует рассмотреть вводно-физические свойства почвы. Вода в почве является одним из основных факторов почвообразования и одним из главнейших условий плодородия. В мелиоративном отношении особенно важное значение вода приобретает как физическая система, находящаяся в сложных взаимоотношениях с твердой и газообразной фазой почвы и растением. Недостаток воды в почве губительно отражается на урожае. Лишь при необходимом для нормального роста и развития растений содержании жидкой воды и элементов питания в почве при благоприятных воздушных и термических условиях можно получить высокий урожай. Основной источник воды в почве – выпадающие осадки, каждый миллиметр которых на гектаре составляет 10м3, или 10т воды.

На Земле непрерывно совершается круговорот воды. Это постоянно протекающий геофизический процесс, включающий следующие звенья:

а) испарение воды с поверхности мирового океана;

б) перенос паров воздушными потоками в атмосфере;

в) образование облаков и выпадение осадков над океаном и сушей;

г) движение воды на поверхности Земли и в недрах ее (аккумуляция осадков, сток, инфильтрация, испарение).

Содержание воды в почве определяется климатическими условиями зоны и водоудерживающей способность почвы. Роль почвы во внешнем влагообороте и внутреннем влагообмене повышается в результате ее окультуривания, когда заметно увеличиваются влажность, водопроницаемость и влагоемкость, но сокращаются поверхностный сток и бесполезное испарение.

Рассмотрим понятие влажности почвы. Содержание воды в почве колеблется в пределах от сильного иссушения (физиологической сухости) до полного насыщения и переувлажнения.Количество воды, находящейся в данный момент в почве и выраженное в весовых или объемных процентах по отношению к абсолютной сухой почве, называется влажностью почвы. Зная влажность почвы, нетрудно определить запас почвенной влаги. Одна и та же почва может быть неодинаково увлажнена на разных глубинах и в отдельных участках почвенного разреза. Увлажненность почвы зависит от физических свойств ее, водопроницаемости, влагоемкости, капиллярности, удельной поверхности и других условий увлажнения. Изменение влажности почв и создание благоприятных условий увлажнения в течение вегетационного периода достигаются приемами агротехники. Каждая почва имеет свою динамику влажности, меняющуюся по генетическим горизонтам. Различают влажность абсолютную, характеризующуюся валовым (абсолютным) количеством влаги в почве в данной точке на данный момент, выраженном в процентах от веса или объема почвы, и влажность относительную, исчисляемую в процентах от пористости (полной влагоемкости). Влажность почвы определяется разными методами.

Рассмотрим понятие влагоемкости почв. Влагоемкость (влагоудержание) – свойство почвы поглощать и удерживать то максимальное количество воды, которое в данное время соответствует воздействию на нее сил и условиям внешней среды. Это свойство зависит от состояния увлажненности, пористости, температуры почвы, концентрации и состава почвенных растворов, степени окультуренности, а также от других факторов и условий почвообразования. Чем выше температура почвы и воздуха, тем меньше влагоемкость, за исключением почв, обогащенных перегноем. Влагоемкость меняется по генетическим горизонтам и высоте почвенной колонны. В почвенной колонне как бы заключена водная колонна, форма которой зависит от высоты столба почвенного грунта над зеркалом и от условия увлажнения с поверхности. Форма такой колонны будет соответствовать природной зоне. Эти колонны в природных условиях меняются по сезонам года, а также от погодных условий и колебания влажности почвы. Водная колонна изменяется, приближаясь к оптимальной, в условиях окультуривания и мелиорации почвы.

Различаются следующие виды влагоемкости:

а) полная (ПВ);

б) максимальная адсорбционная (МАВ);

в) капиллярная (КВ);

г) наименьшая полевая (НВ) и предельная полевая влагоемкость (ППВ).

Все виды влагоемкости меняются с развитием почвы в природе и еще более – в производственных условиях. Даже одна обработка (рыхление спелой почвы) может улучшить ее водные свойства, увеличивая полевую влагоемкость. А внесение в почву минеральных и органических удобрений или других влагоемких веществ может на длительное время улучшить водные свойства или влагоемкость. Это достигается заделкой в почву навоза, торфа, компоста и других влагоемких веществ. Мелиорирующее действие может оказывать внесение в почву влагоудерживающих высокопористых влагоемких веществ типа перлитов, вермикулита, керамзита.

 

3.2.7 Воздушные и тепловые свойства и режимы почв

 

Воздушные и тепловые свойства почвы. В почве содержится воздух, состав которого отличается от атмосферного большим количеством углекислого газа, меньшим количеством кислорода. При недостатке воздуха в почве замедляется прорастание семян, ненормально развивается корневая система, подавляется микробиологическая деятельность. Содержание воздуха в почве (ее воздухоемкость) зависит от скважности почвы и относительного количества пор, занятых водой.

Важно, чтобы непрерывно шел интенсивный обмен воздуха между почвой и атмосферой (аэрация), чтобы воздух, более богатый кислородом, поступал в почву, а бедный кислородом удалялся из нее.

Различные почвы имеют неодинаковые тепловые свойства. Почвы темноцветные быстрее прогреваются солнцем, чем светлоокрашенные. Почвы с меньшим содержанием воды скорее прогреваются весной, переувлажненные почвы медленно прогреваются и охлаждаются.

В практике земледелия имеет значение теплопроводность почв. Почвы, бедные органическим веществом, отличаются высокой теплопроводностью, а почвы с большим содержанием его, например торфяные, - низкой.

Воздушным режимом почв называют совокупность всех явлений поступления воздуха в почву, передвижения его в профиле почвы, изменения состава и физического состояния при взаимодействии с твердой, жидкой и живой фазами почвы, а также газообмен почвенного воздуха с атмосферным.

Воздушный режим почв подвержен суточной, сезонной, годовой и многолетней изменчивости и находится в прямой зависимости от свойств почв (физических, химических, физико-химических, биологических), погодных условий, характера растительности, возделываемой культуры, агротехники.

Наиболее благоприятно воздушный режим складывается в структурных почвах, обладающих рыхлым сложением, способных быстро проводить и перераспределять поступающие в них воду и воздух. В улучшении воздушного режима нуждаются многие почвы, особенно с постоянным или временным избыточным увлажнением.

Регулируют воздушный режим с помощью агротехнических и мелиоративных мероприятий. На заболоченных почвах агротехнические мероприятия можно применить только после коренной их мелиорации – осушения. Необходимость улучшения аэрации почв выявляют на основании изучения основных показателей воздушного режима: содержания или запаса почвенного воздуха, воздухопроницаемости, скорости диффузии газов, дыхания почвы, состава почвенного воздуха. Все эти показатели тесно взаимосвязаны, однако каждый в отдельности не полно характеризует условия аэрации. В настоящее время оценка состояния воздушного режима по указанным параметрам нуждается в уточнении с учетом свойств конкретных почв и потребности в аэрации различных культур.

Содержание воздуха в легких почвах (песчаных и супесчаных), а также в суглинистых и глинистых, обладающих агрономически ценной структурой, поддерживается в верхних горизонтах в течение вегетации растений на достаточно высоком уровне (20 – 25% объема почвы). В бесструктурных почвах тяжелого механического состава содержание почвенного воздуха зависит от состояния уплотнения и увлажнения почвы. Даже при оптимальной влажности в таких почвах растения могут страдать от недостатка О2 и избытка СО2. при влажности, равной НВ, содержание воздуха в указанных почвах падает ниже критической величины (менее 15% объема почвы).

Большой вред приносит почвенная корка, образующаяся на бесструктурных почвах. Она обладает значительной плотностью и низкой пористостью. Согласно данным Н.П. Поясова, почвенная корка уже при влажности 17% (22,2% объема почвы) препятствует нормальной аэрации.

Значение пор аэрации для осуществления газообмена изменяется в зависимости от свойств почв и их температурного режима. Так, благоприятный состав почвенного воздуха, когда содержание СО2 не превышает 2 – 3%, а концентрация кислорода не падает ниже 19 – 18%, поддерживается в суглинистых дерново-подзолистых почвах при содержании воздуха более 20% объема почвы, если температура почвы превышает 15оС. При температуре почвы 10 – 15оС условия аэрации обеспечиваются при более низком содержании воздуха – 15 – 20% объема почвы.

В перегнойно-торфяных почвах для нормального газообмена минимальная величина пор аэрации составляет 35% объема почвы при температуре свыше 15оС, а при температуре 10 – 15оС – 30% объема почвы.

Все приемы обработки почвы, улучшающие ее сложение, увеличивающие общий объем пор и пор аэрации, усиливают интенсивность газообмена, уменьшают концентрацию СО2, увеличивают содержание О2 в почве. Улучшение аэрации почв обработками будет тем продолжительнее, чем лучше структурное состояние почвы. Поэтому все мероприятия по окультуриванию почв имеют большое значение в улучшении воздушного режима.

С общим объемом пор и их размером связана скорость прохождения через почву воздуха и отдельных газов. Если в почве господствует капиллярная пористость, то воздухопроницаемость после обильного увлажнения практически отсутствует.

Воздухопроницаемость суглинистых и глинистых почв зависит, прежде всего, от содержания в почве крупных (более 0,5 – 1 мм) водопрочных агрегатов, обеспечивающих необходимый объем некапиллярных пор.

Согласно исследованиям Н.Ф. Добрякова, по воздухопроницаемости можно судить о состоянии структуры и, следовательно, о способности.

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 141.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...