Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основы подготовки нефти к переработке




Министерство образования и науки Российской Федерации

ФГБОУ ВО

Дагестанский государственный технический университет

Факультет НГиП

Кафедра:БНиГС

Курсовая работа

По дисциплине:

«Заканчиваниескважин»

На тему:

«Установка подготовки нефти на площади Новая надежда»

Выполнил: ст-т 4 курса Г432

Абдулаев С.А                                                                                      

                                                                      Проверил: ст. преподаватель

Дусилаев М.А.

Махачкала 2018

СОДЕРЖАНИЕ

ВВЕДЕНИЕ…………………………………………………………………....….3

Геологическая характеристика месторождения «Новая Надежда» …..….5

ТЕХНИЧЕСКАЯ ЧАСТЬ

1. Основы подготовки нефти к переработке…………………………………8

1.1. Дегазация нефти…………………………………………………………….8

1.2. Стабилизация нефти………………………………………………………11

1.3. Нефтяные эмульсии……………………………………………………….13

1.4. Способы разрушения нефтяных эмульсий…………………………….19

1.5. Обезвоживание нефти……………………………………………….…….21

1.6. Обессоливание нефти……………………..............................................…22

РАСЧЕТНАЯ ЧАСТЬ

Подбор элементов установки первичной подготовки нефти на месторождении новая надежда……………………………………………….24

ЗАКЛЮЧЕНИЕ………………………………………………………….……..28

СПИСОК ЛИТЕРАТУРЫ...……………………...………………...…………29

 

Введение

Нефть – является одним из ископаемых, добываемых с доисторических времен. И пожалуй, ни одно из природных веществ не вызвало столько споров: по сей день ученые обсуждают, можно ли назвать ее минералом или относить к горным породам, высказывают разные предположения о том, сколько нефти в недрах планеты, до какой глубины она встречается, что происходит с ней по истечении времени, как она образовалось – химизм этих процессов.

Ногайские нефтеносный район представляет из себя крупное подземное поднятие, а также своды и впадины, окружающие его.

Удивительна история открытия перспективного в Ногайском районе Дагестана месторождения. Северо-западнее Махачкалы, в Ногайском районе. В 2011 году на этой площади была открыта нефть в песчаном пласте. НО для транспортировки нефти добытой на площади новая надежда до ближайшей нефтеперерабатывающей станции потребовалось строительство нефтепровода, что оказалось нецелесообразным. 

На сегодняшний день скважина законсервирована. Но даже после строительства строительство трубопровода нужно предусмотреть установку подготовки нефти.

Нефтедобывающее предприятие представляет собой сложный комплекс технологических объектов, осуществляющих добычу, транспортировку, первичную подготовку, хранение и внешнюю перекачку нефти и газа.

Отличительными особенностями нефтедобывающего предприятия являются:

- большаярассредоточенность объектов на площадях, достигающих тысяч и десятков тысяч гектаров;

- непрерывность технологических процессов;

- однотипность технологических процессов на объектах (скважины, групповые установки, сепараторы и т.д.);

- связь всех технологических объектов через единый пласт, на который проведены все эксплуатационные и нагнетательные скважины, через поток продукции (нефть, газ) и через энергетические потоки (пар, газ, вода);

- непостоянство объема добычи нефти на месторождении

Геологическая характеристика месторождения Новая Надежда.

 

В административном отношении площадь Новая Надежда расположена на территории Российской Федерации в республике Дагестан в Ногайсом районе.

Геологический разрез данного месторождения, изученный по результатам бурения и сейсмическим данным, сложен из двух мощных толщ пород:

-кайнозойской (0-2250);

-мезозойской (2250-5000 м).

В группе кайнозойских парод находятся три системы отложений:

- четвертичная (0-390), где встречается апшеронский отдел на глубине (150-390);

- неогеновая (390-790) в которой находятся два отдела эта плиоцен (390-490), и миоцен (490-790);

- полеогеновые отложения (790-2250);

В группе мезозойских парод также находятся три системы отложений к которым относятся:

- меловая система отложений (2250-3050) где расположено два отдела парод это верхние меловые отложения (2250-2550) и нижние меловые отложения (2250-3050);

- система юрских отложений (3050-3800) в которой находятся уже три отдела это отдел верхних юрских отложений (3050-3200), отдел средних юрских отложений (3150-3600) и наконец отдел нижних юрских отложений (3600-3800).

- триасовая система отложений (3800-5500) в которой встречаются также три отдела к которым относятся верхние триасовые отложения (3800-4250), средние триасовые отложения (4250-4500) и нижние триасовые отложения (4500-5500).

Исходя из стратиграфического разреза можно определить что на данной площади находятся различные свиты парод.

Под свитой понимается совокупность пластов горных пород, объединенных общими свойствами, возрастом и условиями образования и т.д.

Акчагильская свита (390-490), сарматская свита (490-590), карагано-чокракская свита (590-790), майкопская свита (790-2150), фораминиферовая свита (2150-2250), анизийская и ладинская свита (4250-4500), демьяновская и култаковская свита (4500-5050), и нефтекумская свита (5050-5500).

Говоря о твердости парод на данном месторождении нет твердых парод имеются лишь мягкие, средне-мягкие и средние.

На глубине (0-150) встречаются мягкие пароды, градиент пластового давления в этих пародах 1,07 МПа. В интервале (150-550) мягко-средние пароды, градиент пластового давления в них также равен 1,07 МПа. Далее встречаются пароды средней твердости (550-2550), поровое давление в данных парод достигает 1,14 МПа. На глубине (2130-2550) встречаются средней твердости парода, предполагаемые углы падения пластов в которых достигает 1-2 º а градиент пластового давления в данных пародах 1,08 МПа.  

В интервале глубин (2250-3000) встречаются мягко-средние парода с углом падения пластов 2-3º и пластовым давлением 1,08МПа. Далее до проектной глубины расположены средней твердости парода (3000-5500) где в интервале (3000- 3800) угол падения 3-4  градуса с пластовым давлением 1,08 МПа, а на глубинах (3800-5500) углы падения пластов равны 0-2º где платовое давление колеблется от 1,15 МПа до 1,52 МПа.

При разработке месторождения Новая Надежда мы естественно будем сталкиваться с осложнениями. В начале бурения на интервале глубин (0-760) у нас будут наблюдаться осыпи и частичное поглощение бурового раствора. Далее в глубинах (760-2130) мы столкнёмся с осыпями, обвалами и сальникообразованием. На глубине (2130-3000) мы также получим обвалы и поглощения бурового раствора но в добавок будет наблюдать водогазонефтепрояления в интервале (2550-3050). Частичное поглощения бурового раствора и нефтегазопрояления такие осложнения мы встретим на глубине (3000-3800). А в интервале (3800-4240) будут наблюдаться только осыпи. И на последних интервалах (4240-5500) мы можем получить частичное поглощения бурового раствора и нефтегазопрояления.

Основы подготовки нефти к переработке

Дегазация нефти

Нефть, добываемая из земных недр, как правило, содержит газ, называемый попутным. На каждую тонну добытой нефти приходится 50-100 м3попутного газа. Перед транспортировкой и подачей нефти на переработку газ должен быть отделен от нефти. Удаление газа из нефти - дегазация прово­дится с помощью сепарации и стабилизации.

В условиях нефтяного пласта при высоком давлении газы рас­творены в нефти. При подъеме нефти на земную поверхность дав­ление падает и растворенный газ выделяется. Важно в этот момент уловить его. Существует несколько схем отделения газа от нефти на про­мысле, различающихся условиями перемещения нефти и газа. Схемы первой группы характеризуются тем, что газ отделяют от нефти на кратчайшем расстоянии от скважины. После отделения газа к центральным пунктам сбора перемещается только нефть. Пример подобной схемы отделения газа от нефти приводится на рис.1а.

Газонефтяная смесь из скважины поступает, в вертикальную емкость С-1, оборудованную устройствами для предотвращения уноса нефти с газом. Эта емкость носит название трапа. Из трапа С-1 газ поступает в газосборный коллектор, а нефть - в мерник Е-1. По газосборному коллектору попутный газ передается для дальнейшей обработки на газобензиновые заводы. К коллектору подключается до ста и более скважин одного или нескольких близлежащих нефтяных месторождений. Поскольку давление, при котором происходит разделение в трапе, невысокое (1-2 ат), для подачи газа на газобензиновые заводы его сжимают0 компрессо­рами ЛК-1.

Нефть из мерника Е-1 самотеком или насосами подается на нефтесборный пункт, где подвергается обезвоживанию.


Описанная схема отличается простотой, но не обеспечивает полноты улавливания попутного газа. После одноступенчатой сепа­рации в нефти остается до 40-50% попутного газа. Этот газ, попадая вместе с нефтью в мерники Е-1 и резервуары нефтесборных пунктов, в значительной степени улетучивается в атмо­сферу. Более эффективны системы многоступенчатой сепарации.

На устье нефтяной скважины поддерживается повышенное давление. В непосредственной близости от скважины размещается газоотделитель первой ступени сепарации С-1, давление в котором равно 6-7 ат. Этого давления достаточно, чтобы без дополнитель­ного сжатия подать газ на газобензиновый завод. Из газоотделителя первой ступени нефть вместе с оставшимся в ней растворенным газом самотеком перемещается на центральный сборный пункт. На этом пункте собираются потоки от большого числа скважин. В результате снижения давления на центральном сборном пункте вновь происходит выделение газа в сепараторе С-2. Этот газ подается на газобензиновый завод компрессорами. Преимущества многоступенчатой схемы сепарации:

· более полное отделение газа от нефти;

· сокращение уноса капель нефти с газом;

· уменьшение расхода электроэнергии на сжатие газа.


Стабилизация нефти

Даже после многоступенчатой промысло­вой сепарации в нефти остается весьма значительное количество углеводородов С14 . Значительная часть этих углеводородов может быть потеряна при перекачках из резервуара в резервуар, при хранении и транспортировке нефти. Вместе с газами теряются ценные легкие бензиновые фракции.

Чтобы ликвидировать потери газов и легких бензиновых фрак­ций, предотвратить загрязнение воздуха, уловить ценные газо­образные компоненты, необходимо максимально извлечь углево­дороды С14 из нефти перед тем, как отправить ее на нефтеперерабатывающие заводы. Эта задача решается на уста­новках стабилизации нефти, расположенных обычно в непосред­ственной близости от места ее добычи. Методы стабилизации нефти могут быть различными. Для большинства нефтей стабилизация производится на установках с применением ректификации.

Схема типовой стабилизационной установки приводится на рис. 2. Нефть, поступающая с промысловых установок сепарации, проходит через теплообменники Т-1, где подогревается уже стабилизированной нефтью, и паро­вые подогреватели Т-2. Подо­гретая нефть поступает в рек­тификационную колонну-ста­билизатор К.-1. Уходящие с верха стабилизатора легкие уг­леводороды конденсируются в конденсаторе холодильнике ХК-1 и поступают в емкость Е-1. С верха стабилизатора уходят углеводороды от С1 до С5включительно. При охлаж­дении оборотной промышлен­ной водой в конденсаторе-хо­лодильнике конденсируется не весь продукт, уходящий с вер­ха колонны. Поэтому в емко­сти Е-1 происходит разделение смеси, поступившей из кон­денсатора, на газ и жид­кость.

Газ из Е-1 направляется в топливную сеть. Жидкий продукт - газовый конденсат частично возвращается в колонну К-1 в качестве орошения, а балансовое количество[1] выводится со стабилизационной установки и передается на центральные газофракционирующие установки (ЦГФУ). Эти установки предназначаются для разделения газового конденсата нескольких стабилизационных установок на индивидуальные углеводороды.

С низа стабилизатора уходит стабильная нефть, которая отдает свое тепло поступающему сырью в теплообменнике Т-1 и доохлаждается в холодильнике. Необходимое для ректификации тепло под­водится в нижнюю часть стабилизационной колонны через трубча­тую печь. Содержание газа (углеводородов С1 - С4 ) в стабильной нефти составляет 0,8-1,5%.

Нефтяные эмульсии

При добыче нефти ее почти всегда сопровождает пластовая (буровая) вода. В буровых водах растворены различные соли, чаще всего хлориды и бикарбонаты натрия, кальция, магния, реже карбонаты и сульфаты. Содержание солей в этих водах колеб­лется в широких пределах, от незначительного до 30%.

Наличие в нефти, поступающей на переработку, воды и солей вредно сказывается на работе нефтеперерабатывающего завода. При большом содержании воды повышается давление в аппара­туре установок перегонки нефти, снижается их производительность, расходуется излишнее тепло на подогрев и испарение воды.

Еще более отрицательным действием обладают хлориды. Они откладываются в трубах теплообменников и печей, что приводит к необходимости частой очистки труб, снижает коэффициент теплопередачи. Хлориды, в особенности кальция и магния, гидролизуются с образованием соляной кислоты даже при низких тем­пературах. Под действием соляной кислоты происходит разруше­ние (коррозия) металла аппаратуры технологических установок. Особенно быстро разъедается под действием гидролизовавшихся хлористых солей конденсационно-холодильная аппаратура пере­гонных установок. Наконец, соли, накапливаясь в остаточных нефтепродуктах - мазуте и гудроне, ухудшают их качество. Следовательно, перед подачей нефти на переработку ее необ­ходимо отделить от воды и солей.

02+’

Воду и соли удаляют непосредственно после извлечения нефти из земных недр (на промыслах) и на нефтеперерабатывающих за­водах. Существует два типа технологических процессов удаления воды и солей - обезвоживание и обессоливание. В основе обоих процессов лежит разрушение нефтяных эмульсий. Однако при обезвоживании разрушаются природные эмульсии, те, которые образовались в результате интенсивного перемешивания нефти с буровой водой. Обезвоживание проводится на промыслах и явля­ется наряду с дегазацией первым этапом подготовки нефти к транспортировке и переработке.

При обессоливании обезвоженную нефть смешивают с пресной водой, создавая искусственную эмульсию, которая затем разру­шается. Обессоливание нефти проводится на промыслах и нефте­перерабатывающих заводах.

Нефть и вода взаимно плохо растворимы. Поэтому отделение основной массы воды от нефти простым от­стаиванием не представляет большого труда, если при добыче не образовалась водно-нефтяная эмульсия. Но чаще всего такая эмульсия образуется. Перерабатывать обводненную эмульгированную нефть нельзя. Даже если эмульсия не образовалась, то не­значительное количество воды все же остается в нефти в раство­ренном или во взвешенном состоянии. А вместе с водой в нефть попадают и минеральные соли, которые вызывают коррозию нефте­перегонной аппаратуры.

Эмульсией называется такая система двух взаимнонерастворимых или не вполне растворимых жидкостей, в которых одна содер­жится в другой во взвешенном состоянии в виде огромного количества микроскопических капель (глобул), исчисляемых трил­лионами на литр эмульсии. Жидкость, в которой распределены глобулы, называется дисперсной средой, а вторая жидкость, рас­пределенная в дисперсной среде, - дисперсной фазой.

При движении нефти по скважинам она весьма интенсивно перемешивается с пластовой водой. В различных стадиях переработки, например при защелачивании, нефть и ее погоны также тесно соприкасаются с водой. В этих случаях часто и образуются стойкие нефтяные эмульсии. Расслаивание нефтяных эмульсий в естественных условиях иногда наступает по истечении весьма длительного времени. (Описаны эмульсии, не разрушавшиеся годами). Однако чаще всего про­исходит частичное расслаивание, после которого между слоями воды и нефти остается промежуточный эмульсионный слой.

Стойкие эмульсии по внешнему виду представляют собой гус­тые мазеобразйые массы от светло-желтого до темного цвета. Эмульсии, образовавшиеся после водно-щелочной промывки неф­тепродукта, иногда имеют почти сметанообразный вид. Вязкость эмульсий значительно выше вязкости воды и нефти.

Нефтяные эмульсии чаще всего представляют собой эмульсии типа вода в нефти, в которых дисперсной средой является нефть, а дисперсной фазой-вода. Такая эмульсия гидрофобна: в воде она всплывает, а в бензине или других растворителях равномерно распределяется.

Реже встречаются эмульсии типа нефть в воде, в которых дис­персной средой служит вода. Такая эмульсия гидрофильна: вводе она равномерно распределяется, а в бензине тонет.

Образование эмульсий связано с поверхностными явлениями. Поверхностный слой жидкости на границе с воздухом или другой жидкостью, как известно, характеризуется определенным поверх­ностным натяжением, т. е. силой, с которой жидкость сопротив­ляется увеличению своей поверхности. Поверхностное натяжение нефти и нефтепродуктов колеблется в пределах 0,02-0,05 н/м (20-50 дн/см). Опыты показывают, что добавление некоторых веществ к чистым нефтяным погонам вызывает понижение их по­верхностного натяжения на границе с водой. Это явление носит общий характер.

Иногда вещества при растворении даже в очень малых кон­центрациях существенно понижают поверхностное натяжение рас­творителя. Вещества, способные понижать поверхностное натя­жение, называются поверхностно-активными. Характерная осо­бенность этих веществ в том, что в их состав входит, как правило, углеводородный радикал (гидрофобная часть молекулы) и какая- либо полярная группа (гидрофильная часть молекулы). Понижение поверхностного натяжения двухфазной жидкой системы на границе раздела фаз в результате воздействия полярных веществ объяс­няется тем, что добавленное вещество распределяется неравномер­но в том компоненте системы, который является по отношению к нему растворителем. Концентрация его у поверхности раздела фаз будет более высокой, чем во всем объеме растворителя. Иными словами, добавленное полярное вещество будет адсорбироваться поверхностным слоем растворителя и тем самым понижать его по­верхностную энергию. В результате на границе раздела фаз обра­зуется адсорбированный слой, который можно рассматривать как пленку молекул поверхностно-активяого вещества на поверхности растворителя.

Всякая эмульсия, в том числе и нефтяная, может образоваться только тогда, когда механическое воздействие на смесь двух взаимно нерастворимых жидкостей будет вызывать диспергирование, т. е. дробление жидкости на очень мелкие частицы. Ясно, что чем меньше поверхностное натяжение жидкостей, тем легче будет идти образование капель, т. е. увеличение общей поверхности жид­кости, так как оно будет требовать меньшей затраты работы. Однако после перемешивания двух чистых, нерастворимых друг в друге жидкостей стойкость полученной эмульсии обычно неве­лика. Более тяжелая жидкость осядет на дно, капельки дисперсной фазы, сталкиваясь друг с другом, объединятся в более крупные. Оба эти процесса и приведут к расслаиванию эмульсии на два слоя. Только при очень высокой степени дисперсности, когда диа­метр капель дисперсной фазы измеряется десятыми долями мик­рона (10-7 м) и межмолекулярные силы уравнивают гравита­ционные силы, разрушение эмульсии становится затруднительным.

Иначе обстоит дело, если смесь двух нерастворимых жидкостей находится в условиях, способствующих диспергированию, и в ней присутствует какое-либо поверхностно-активное вещество, пони­жающее поверхностное натяжение за счет образования адсорб­ционного слоя. Во-первых, это способствует дроблению капель, а во-вторых (что имеет решающее значение), капли будут окружены не молекулами дисперсной среды, а прочной пленкой адсообционного слоя. В этом случае образуются стойкие, трудно расслаиваю­щиеся эмульсии, так как капли дисперсной фазы, защищенные своеобразным панцирем - адсорбционной пленкой, не могут сли­ваться друг с другом. В некоторых случаях толщина адсорб­ционной пленки такова, что ее можно рассмотреть в микро­скоп.

Вещества, способствующие образованию и стабилизации эмуль­сий, называются эмульгаторами. Ими являются такие полярные вещества нефти, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные не­органические примеси. Например, по данным Левченко, в состав эмульгаторов арланской и ромашкинской нефти, помимо смол и асфальтенов входит до 50% неорганических веществ. Исследова­ния последних лет показали, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды.

Микрокристаллы парафинов, церезинов и смешанных пара­фина-нафтеновых углеводородов, адсорбируясь на поверхности эмульсионных глобул, образуют своеобразную броню.

Характер эмульсии зависит от свойств эмульгатора. В сырой нефти обыкновенно образуется гидрофобная эмульсия типа вода в нефти, так как эмульгаторами в этом случае являются смолы. Они хорошо растворяются в нефти и не растворяются в воде. Смолы, адсорбируясь на поверхности раздела нефть-вода, по­падают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды.

Алюминиевые, кальциевые, магниевые и железные мыла неф­тяных кислот также хорошо растворимы в нефти и ее дистилля­тах, поэтому они также способствуют образованию гидрофобных эмульсий. Наоборот, натриевые мыла нефтяных кислот (продукт реакции при щелочной очистке) хорошо растворимы в воде и хуже в углеводородах. Поэтому они адсорбируются в поверхностном слое со стороны водной фазы, обволакивают пленкой капельки нефти и таким образом способствуют образованию гидрофильной эмульсии типа нефть в воде.

При наличии эмульгаторов обоих типов возможно обращение эмульсий, т. е. переход их из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий.










Последнее изменение этой страницы: 2018-05-10; просмотров: 306.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...