Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Механизмы реализации виртуальной памяти




 

Необходимым условием для того, чтобы программа могла выполняться, является ее нахождение в оперативной памяти. Объем оперативной памяти, который имеется в компьютере, существенно сказывается на характере протекания вычислительного процесса. Он ограничивает число одновременно выполняющихся программ и размеры их виртуальных адресных пространств. В некоторых случаях, когда все задачи мультипрограммной смеси являются вычислительными (то есть выполняют относительно мало операций ввода-вывода, разгружающих центральный процессор), для хорошей загрузки процессора может оказаться достаточным всего 3-5 задач. Однако если вычислительная система загружена выполнением интерактивных задач, то для эффективного использования процессора может потребоваться уже несколько десятков, а то и сотен задач.

Большое количество задач, необходимое для высокой загрузки процессора, требует большого объема оперативной памяти. В условиях, когда для обеспечения приемлемого уровня мультипрограммирования имеющейся оперативной памяти недостаточно, был предложен метод организации вычислительного процесса, при котором образы некоторых процессов целиком или частично временно выгружаются на диск.

В мультипрограммном режиме помимо активного процесса, то есть процесса, коды которого в настоящий момент интерпретируются процессором, имеются приостановленные процессы, находящиеся в ожидании завершения ввода-вывода или освобождения ресурсов, а также процессы в состоянии готовности, стоящие в очереди к процессору. Образы таких неактивных процессов могут быть временно, до следующего цикла активности, выгружены на диск. Несмотря на то что коды и данные процесса отсутствуют в оперативной памяти, ОС «знает» о его существовании и в полной мере учитывает это при распределении процессорного времени и других системных ресурсов. К моменту, когда подходит очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память. Если при этом обнаруживается, что свободного места в оперативной памяти не хватает, то на диск выгружается другой процесс.

Такая подмена (виртуализация) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования - объем оперативной памяти компьютера теперь не столь жестко ограничивает количество одновременно выполняемых процессов, поскольку суммарный объем памяти, занимаемой образами этих процессов, может существенно превосходить имеющийся объем оперативной памяти. В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память, размер которой намного превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программу, а транслятор, используя виртуальные адреса, переводит ее в машинные коды так, как будто в распоряжении программы имеется однородная оперативная память большого объема. В действительности же все коды и данные, используемые программой, хранятся на дисках и только при необходимости загружаются в реальную оперативную память. Понятно, что работа такой «оперативной памяти» происходит значительно медленнее.

Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач:

· размещение данных в запоминающих устройствах разного типа, например часть кодов программы - в оперативной памяти, а часть - на диске;

· выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно;

· перемещение по мере необходимости данных между памятью и диском;

· преобразование виртуальных адресов в физические.

Очень важно то, что все действия по организации совместного использования диска и оперативной памяти - выделение места для перемещаемых фрагментов, настройка адресов, выбор кандидатов на загрузку и выгрузку - осуществляются операционной системой и аппаратурой процессора автоматически, без участия программиста, и никак не сказываются на логике работы приложений.

Виртуализация памяти может быть осуществлена на основе двух различных подходов:

· свопинг (swapping) -образы процессов выгружаются на диск и возвращаются в оперативную память целиком;

· виртуальная память (virtual memory) -между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов про-цессов.

Свопинг представляет собой частный случай виртуальной памяти и, следовательно, более простой в реализации способ совместного использования оперативной памяти и диска. Однако подкачке свойственна избыточность: когда ОС решает активизировать процесс, для его выполнения, как правило, не требуется загружать в оперативную память все его сегменты полностью - достаточно загрузить небольшую часть кодового сегмента с подлежащей выполнению инструкцией и частью сегментов данных, с которыми работает эта инструкция, а также отвести место под сегмент стека. Аналогично при освобождении памяти для загрузки нового процесса очень часто вовсе не требуется выгружать другой процесс на диск целиком, достаточно вытеснить на диск только часть его образа. Перемещение избыточной информации замедляет работу системы, а также приводит к неэффективному использованию памяти. Кроме того, системы, поддерживающие свопинг, имеют еще один очень существенный недостаток: они не способны загрузить для выполнения процесс, виртуальное адресное пространство которого превышает имеющуюся в наличии свободную память. Именно из-за указанных недостатков свопинг как основной механизм управления памятью почти не используется в современных ОС. На смену ему пришел более совершенный механизм виртуальной памяти, который, как уже было сказано, заключается в том, что при нехватке места в оперативной памяти на диск выгружаются только части образов процессов.

Ключевой проблемой виртуальной памяти, возникающей в результате многократного изменения местоположения в оперативной памяти образов процессов или их частей, является преобразование виртуальных адресов в физические. Решение этой проблемы, в свою очередь, зависит от того, какой способ структуризации виртуального адресного пространства принят в данной системе управления памятью. В настоящее время все множество реализаций виртуальной памяти может быть представлено тремя классами.

· Страничная виртуальная память организует перемещение данных между памятью и диском страницами - частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера.

· Сегментная виртуальная память предусматривает перемещение данных сегментами - частями виртуального адресного пространства произвольного размера, полученными с учетом смыслового значения данных.

· Сегментно-страничная виртуальная память использует двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения данных здесь является страница. Этот способ управления памятью объединяет в себе элементы обоих предыдущих подходов.

Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный файл, которые во многих ОС по традиции продолжают называть областью или файлом свопинга, хотя перемещение информации между оперативной памятью и диском осуществляется уже не в форме полного замещения одного процесса другим, а частями. Другое популярное название этой области - страничный файл (page file, или paging file). Текущий размер страничного файла является важным параметром, оказывающим влияние на возможности операционной системы: чем больше страничный файл, тем больше приложений может одновременно выполнять ОС (при фиксированном размере оперативной памяти). Размер страничного файла в современных ОС является настраиваемым параметром, который выбирается администратором системы для достижения компромисса между уровнем мультипрограммирования и быстродействием системы.

 

Страничное распределение

 

При страничном распределении виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами (virtual pages). В общем случае размер виртуального адресного пространства процесса не кратен размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.

Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками, или кадрами). Размер страницы выбирается равным степени двойки: 512, 1024, 4096 байт и т. д. Это позволяет упростить механизм преобразования адресов.

При создании процесса ОС загружает в оперативную память несколько его виртуальных страниц (начальные страницы кодового сегмента и сегмента данных). Копия всего виртуального адресного пространства процесса находится на диске. Смежные виртуальные страницы не обязательно располагаются в смежных физических страницах. Для каждого процесса операционная система создает таблицу страниц – информационную структуру, содержащую записи обо всех виртуальных страницах процесса.

Запись таблицы, называемая дескриптором страницы, включает следующую информацию:

· номер физической страницы, в которую загружена данная виртуальная страница;

· признак присутствия, устанавливаемый в единицу, если виртуальная страница находится в оперативной памяти;

· признак модификации страницы, который устанавливается в единицу всякий раз, когда производится запись по адресу, относящемуся к данной странице;

· признак обращения к странице, называемый также битом доступа, который устанавливается в единицу при каждом обращении по адресу, относящемуся к данной странице.

Признаки присутствия, модификации и обращения в большинстве моделей современных процессоров устанавливаются аппаратно, т.е. схемами процессора, при выполнении операции с памятью. Информация из таблиц страниц используется для решения вопроса о необходимости перемещения той или иной страницы между памятью и диском, а также для преобразования виртуального адреса в физический. Сами таблицы страниц, так же, как и описываемые ими страницы, размещаются в оперативной памяти. Адрес таблицы страниц включается в контекст соответствующего процесса. При активизации очередного процесса операционная система загружает адрес его таблицы страниц в специальный регистр процессора.

При каждом обращении к памяти выполняется поиск номера виртуальной страницы, содержащей требуемый адрес, затем по этому номеру определяется нужный элемент таблицы страниц, и из него извлекается описывающая страницу информация. Далее анализируется признак присутствия. Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический, то есть виртуальный адрес заменяется указанным в записи таблицы физическим адресом. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания, и активизируется другой процесс из очереди процессов, находящихся в состоянии готовности. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу (для этого операционная система должна помнить положение вытесненной страницы в страничном файле диска) и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то на основании принятой в данной системе стратегии замещения страниц решается вопрос о том, какую страницу следует выгрузить из оперативной памяти.

После того как страница выбрана, обнуляется ее бит присутствия, а затем анализируется ее признак модификации. Если выталкиваемая страница за время последнего пребывания в оперативной памяти была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то принимая во внимание, что на диске уже имеется предыдущая копия этой виртуальной страницы, никакой записи на диск не производится. Физическая страница объявляется свободной. Наиболее популярным критерием выбора страницы на выгрузку является число обращений к ней за последний период времени. Вычисление этого критерия происходит следующим образом. Операционная система ведет для каждой страницы программный счетчик. Значения счетчиков определяются значениями признаков доступа. Всякий раз, когда происходит обращение к какой-либо странице, процессор устанавливает в единицу признак доступа в относящейся к данной странице записи таблицы страниц. ОС периодически просматривает признаки доступа всех страниц во всех существующих в данный момент записях таблицы страниц. Если какой-либо признак оказывается равным 1 (было обращение), то система сбрасывает его в 0, увеличивая при этом на единицу значение связанного с этой страницей счетчика обращений. Когда возникает необходимость удалить какую-либо страницу из памяти, ОС находит страницу, счетчик обращений которой имеет наименьшее значение. Для того чтобы критерий учитывал интенсивность обращений за последний период, ОС с соответствующей периодичностью обнуляет все счетчики.

Страничное распределение памяти может быть реализовано в упрощенном варианте, без выгрузки страниц на диск. В этом случае все виртуальные страницы всех процессов постоянно находятся в оперативной памяти. Такой вариант страничной организации хотя и не предоставляет пользователю преимуществ работы с виртуальной памятью большого объема, но сохраняет другое достоинство страничной организации - позволяет успешно бороться с фрагментацией физической памяти. Действительно, во-первых, программу можно разбить на части и загрузить в разрозненные участки свободной памяти, во-вторых, при загрузке виртуальных страниц никогда не образуется неиспользуемых остатков, так как размеры виртуальных и физических страниц совпадают. Такой режим работы системы управления памятью используется в некоторых специализированных ОС, когда требуются высокая реактивность системы и ее способность выполнять переменный набор приложений (пример - ОС семейства Novell NetWare 3.x и 4.x).

 

Сегментное распределение

При страничной организации виртуальное адресное пространство процесса делится на равные части механически, без учета смыслового значения данных. В одной странице могут оказаться и коды команд, и инициализируемые переменные, и массив исходных данных программы. Такой подход не позволяет обеспечить дифференцированный доступ к разным частям программы, а это свойство могло бы быть очень полезным во многих случаях. Например, можно было бы запретить обращаться с операциями записи в сегмент программы, содержащий коды команд, разрешив эту операцию для сегментов данных.

Кроме того, разбиение виртуального адресного пространства на «осмысленные» части делает принципиально возможным совместное использование фрагментов программ разными процессами. Пусть, например, двум процессам требуется одна и та же подпрограмма, которая к тому же обладает свойством реентерабельности. Реентерабельность (reentrantable, reenterability) - свойство повторной входимости кода, которое позволяет одновременно использовать его несколькими процессами. При выполнении реентерабельного кода процессы не изменяют его, поэтому в память достаточно загрузить только одну копию кода.

Тогда коды этой подпрограммы могут быть оформлены в виде отдельного сегмента и включены в виртуальные адресные пространства обоих процессов. При отображении в физическую память сегменты, содержащие коды подпрограммы из обоих виртуальных пространств, проецируются на одну и ту же область физической памяти. Таким образом, оба процесса получат доступ к одной и той же копии подпрограммы.

Итак, виртуальное адресное пространство процесса делится на части - сегменты, размер которых определяется с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т. п. Деление виртуального адресного пространства на сегменты осуществляется компилятором на основе указаний программиста или по умолчанию, в соответствии с принятыми в системе соглашениями. Максимальный размер сегмента определяется разрядностью виртуального адреса, например при 32-разрядной организации процессора он равен 4 Гбайт.

При загрузке процесса в оперативную память помещается только часть его сегментов, полная копия виртуального адресного пространства находится в дисковой памяти. Для каждого загружаемого сегмента операционная система подыскивает непрерывный участок свободной памяти достаточного размера. Смежные в виртуальной памяти сегменты одного процесса могут занимать в оперативной памяти несмежные участки. Если во время выполнения процесса происходит обращение по виртуальному адресу, относящемуся к сегменту, который в данный момент отсутствует в памяти, то происходит прерывание. ОС приостанавливает активный процесс, запускает на выполнение следующий процесс из очереди, а параллельно организует загрузку нужного сегмента с диска. При отсутствии в памяти места, необходимого для загрузки сегмента, операционная система выбирает сегмент на выгрузку, при этом она использует критерии, аналогичные рассмотренным выше критериям выбора страниц при страничном способе управления памятью.

На этапе создания процесса во время загрузки его образа в оперативную память система создает таблицу сегментов процесса (аналогичную таблице страниц), в которой для каждого сегмента указываются:

· физический адрес сегмента в оперативной памяти;

· размер сегмента;

· правила доступа к сегменту;

· признаки модификации, присутствия и обращения к данному сегменту, а также некоторая другая информация.

Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре.

Как видно, сегментное распределение памяти имеет очень много общего со страничным распределением.

Механизмы преобразования адресов этих двух способов управления памятью тоже весьма схожи, однако в них имеются и существенные отличия, которые являются следствием того, что сегменты в отличие от страниц имеют произвольный размер. Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g - номер сегмента, a s - смещение в сегменте. Физический адрес получается путем сложения адреса сегмента, который определяется по номеру сегмента g из таблицы сегментов и смещения s.

Недостатком сегментного распределения является избыточность. При сегментной организации единицей перемещения между памятью и диском является сегмент, имеющий в общем случае объем больший, чем страница. Однако во многих случаях для работы программы вовсе не требуется загружать весь сегмент целиком, достаточно было бы одной или двух страниц. Аналогично при отсутствии свободного места в памяти не стоит выгружать целый сегмент, когда можно обойтись выгрузкой нескольких страниц.

Но главный недостаток сегментного распределения - это фрагментация, которая возникает из-за непредсказуемости размеров сегментов. В процессе работы системы в памяти образуются небольшие участки свободной памяти, в которые не может быть загружен ни один сегмент. Суммарный объем, занимаемый фрагментами, может составить существенную часть общей памяти системы, приводя к ее неэффективному использо-ванию.

Система с сегментной организацией функционирует аналогично системе со страничной организацией: при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический, время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются.

Одним из существенных отличий сегментной организации памяти от страничной является возможность задания дифференцированных прав доступа процесса к его сегментам. Например, один сегмент данных, содержащий исходную информацию для приложения, может иметь права доступа «только чтение», а сегмент данных, представляющий результаты, - «чтение и запись». Это свойство дает принципиальное преимущество сегментной модели памяти над страничной.










Последнее изменение этой страницы: 2018-05-10; просмотров: 252.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...