Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Жидкометаллические контакты




Наиболее характерные недостатки твердометаллических контактов:

· с ростом длительного номинального тока возрастают необходимое значение контактного нажатия, габариты и масса контактов. При токах 10 кА и выше резко увели­чиваются габариты и масса аппарата в целом;

· эрозия контактов ограничивает износостойкость ап­парата;

· окисление поверхности и возможность приваривания контактов понижают надежность аппарата.

При больших токах КЗ контактные нажатия достигают больших значе­ний, что увеличивает необходимую мощность привода, га­бариты и массу аппа-рата.

По сравнению с твердометаллическими ЖМК облада­ют следующими преимуществами:

· малым переходным сопротивлением и высокими допусти­мыми плотностями тока на поверхности раздела жидкий металл – электрод (до 120 А/мм2), что позволяет резко сократить габаритные раз­меры контактного узла и контактное нажатие, особен­но при больших токах;

· высокой механической и электрической износостой­костью ЖМК, что позволяет создавать аппараты с боль­шим сроком службы;

· отсутствием вибрации, приваривания, залипания и окисления контактов при их коммутации;

· возможностью разра­ботки коммутационных ап­паратов на новом принципе (автоматический восстанавли­вающийся предохранитель), благодаря свойст­вам текучести жидкого металла;

· возможностью работы ЖМК при высоких внешних давлениях, высоких температурах, в глубоком вакууме.

Необходимо отметить и недостатки ЖМК:

· обычно применяемые контактные материалы галий и его сплавы с другими металлами требуют подогрева кон­тактов до момента включения, так как температура окру­жающей среды может быть ниже температуры затвердева­ния этих материалов;

· большинство аппаратов с ЖМК требуют определен­ного положения в пространстве и подвержены влиянию сторонних механических воздействий (ударов, вибраций) что затрудняет их применение.

 

14.Термоэлектронная эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так называемое катодное пятно (раскаленная площадка), которое служит основанием дуги и очагом излучения электронов в первый момент расхождения контактов. Плотность тока термоэлектронной эмиссии зависит от температуры и материала электрода. Она невелика и может быть достаточной для возникновения электрической дуги, но она недостаточна для ее горения.

Автоэлектронная эмиссия. Это – явление испускания электронов из катода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент равна бесконечности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

Термическая ионизация. Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги  после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объясняется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит ионизация газа. Основной характеристикой термической ионизации является степень ионизации, представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одно-временно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации. 

Деионизация происходит главным образом за счет рекомбинации и диффузии.

Рекомбинация. Процесс, при котором различно заряженные частицы, приходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

 

16.Промежуточные реле применяются для одновременного замыкания или размыкания одной или нескольких цепей.

Реле времени служит для искусственного замедления действия устройств защиты и автоматики. Время, проходящее с момента подачи напряжения на обмотку реле времени до замыкания его контактов, называется выдержкой времени реле.

Защитные реле могут применяться для включения, выключения и защиты устройств - электродвигателей, вентиляторов и т.д., имеющих термоконтакты. Защитное реле автоматически отключит вентилятор, если термоконтакты двигателя разомкнутся. Повторное включение возможно после того, как двигатель остынет до рабочей температуры.

Реле давленияпредназначено например, для систем автоматического водоснабжения домов, коттеджей, дач и др. Может служить для управления включения и отключения электрических насосов, которые обеспечивают подачу давления в водопроводе в соответствии со значением уставки давления.

Измерительные реле тока или напряжения замыкают контакты при определенном значении протекающего через обмотку реле тока или напряжения (в реле, работающем на электромагнитном принципе).

Указательные реле служат для фиксации действия релейной защиты. Протекающий ток носит кратковременный характер, контакты остаются в сработанном состоянии до тех пор, пока их не приведет в начальное состояние обслуживающий персонал.

Реле состоит из:

1. Электромагнита

2. Якоря

3. Контактов реле

4. Пружины

5. Розетки, куда вставляется реле

Когда на обмотку электромагнита подается ток, его сердечник притягивает железную пластину – якорь и замыкаются контакты рабочей цепи реле, в которую могут быть включены электрические аппараты (лампы, пускатели и т.д.). Если ток не подается, то пружина оттягивает пластину вверх и цепь размыкается.

17.Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока.

Общие технические требования к контакторам и условия их работы регламентированы ГОСТ 11206—77. Ниже описываются категории применения современных контакторов и приводятся параметры коммутируемых ими цепей в зависимости от характера нагрузки.

Контакторы постоянного тока:

ДС-1 — активная или малоиндуктивная нагрузка.

ДС-2—пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения.

ДС-3—пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора.

ДС-4—пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения.

ДС-5—пуск электродвигателей с последовательным возбуждением, отключение неподвижных или мед-ленно вращающихся двигателей, торможение противотоком.

Общие требования к контакторам:

1.Высокая включающая и отключающая способность – не ниже 10Iном, а в отдельных случаях до 20Iном ;

2. Длительная работа при большой частоте отключений;

3. Высокая коммутационная износостойкость – до 3 млн. циклов с учетом отключений пусковых токов;

4. Высокая механическая износостойкость;

5. Технологичность конструкции, малая масса и габариты;

6. Высокая надёжность в эксплуатации

 

 

18.Пускатели магнитные ПМ12

Магнитные пускатели предназначены для дистанционного управления электродвигателями и другими электроустановками. Они обеспечивают нулевую защиту, т.е. при исчезновении напряжения или его снижении до 50—60% от номинального катушка не удерживает магнитную систему пускателя, и силовые контакты размыкаются. При восстановлении напряжения токоприемник остается отключенным. Это исключает возможность аварий, связанных с самопроизвольным пуском электродвигателя или другой электроустановки. Пускатели с тепловыми реле осуществляют также защиту электроустановки от длительных перегрузок.

Пускатели магнитные ПМ12 служат для автоматического и полуавтоматического включения электрических нагрузок различного типа. Это могут быть электродвигатели, как трехфазные, так и однофазные, электрические и индукционные печи, нагреватели, вентиляторы и прочие электропотребители.

Пускатели магнитные ПМЛ

Пускатели магнитные ПМЛ предназначены для коммутации различных электротехнических потребителей. Чаще всего пускатели ПМЛ используются для включения трехфазных асинхронных электродвигателей, но также их можно применять для подключения трехфазных нагревателей, электрических печей, трансформаторов и других промышленных потребителей электрической энергии.

При наличии тепловых реле, пускатели ПМЛ защищают коммутируемые ими двигатели от перегрузок по току, возникающих при аварийных режимах электрических трехфазных сетей-таких как перекос фаз электрической трехфазной сети, несимметричные режимы и режим потери фазы.

Пускатели магнитные ПМЕ

Пускатели магнитные серии ПМЕ предназначены для подключения электрических нагрузок, в основном трехфазных. Чаще всего при помощи пускателей ПМЕ подключают электрические трехфазные двигатели с короткозамкнутым ротором, трехфазные электрические нагреватели, кондиционеры, вентиляторы, насосы и прочие электрические устройства.

Пускатели магнитные ПМА

Пускатели магнитные ПМА служат для подключения мощных трехфазных электрических механизмов-электродвигателей, нагревателей, насосов, кондиционеров.










Последнее изменение этой страницы: 2018-06-01; просмотров: 232.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...