Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Конструкции стеновых панелей




ЛЕКЦИЯ № 1

 

КРУПНОПАНЕЛЬНЫЕ ЗДАНИЯ

План.

1. Конструктивные схемы.

2. Конструкции стеновых панелей.

3. Стыки стеновых панелей.

4. Каркасно – панельные здания и их конструкции.

5. Стыки конструкций каркасных зданий.

 

  1. Конструктивные схемы

 

Крупнопанельными называют здания, монтируемые из заранее изготовленных крупноразмерных плоскостных элементов стен, перекрытий и покрытий и других конструкций. Эти сборные конструкции имеют повышенную заводскую готов­ность — отделанные наружные и внутрен­ние поверхности, вмонтированные окна и двери.

Строительство зданий из крупных па­нелей позволяет существенно повысить степень индустриальности строительства и производительность труда, снизить стоимость строительства и сократить сроки возведения зданий.

По конструктивной схеме они бывают бескаркасные с продольными и попе­речными несущими стенами и каркасные.

Бескаркасные здания состоят из меньше­го числа сборных элементов и отличают­ся простотой монтажа и имеют преиму­щественное применение в массовом жи­лищном строительстве (рис. 12.1). В этих зданиях наружные и внутренние стены воспринимают все нагрузки, действующие на здание. Пространственная жесткость и устойчивость обеспечивается взаимной связью между панелями стен и перекры­тий.

При этом может быть четыре кон­структивных варианта опирания плит: на продольные несущие стены (рис. 12.1, а); по контуру (на продольные и поперечные стены; рис. 12.1,6); на внутренние попе­речные стены; по трем сторонам (на про-

дольные несущие и внутренние попе­речные стены; рис. 12.1, в).

В каркасных панельных зданиях дей­ствующие на них нагрузки воспринимают ригели и стойки каркаса, а панели выпол­няют чаще всего лишь ограждающие функции (рис. 12.2). При этом различают следующие конструктивные схемы: с пол­ным поперечным каркасом (рис. 12.2,а); с полным продольным каркасом (рис. 12.2,6); с пространственным карка­сом (рис. 12.2, в); с неполным попе­речным каркасом и несущими наружны­ми стенами (рис. 12.2, г); с опиранием плит перекрытия по четырем углам не­посредственно на колонны (безригельный вариант; рис. 12.2, д); с опиранием пане­лей на наружные панели и на две стойки по внутреннему ряду (рис. 12.2, е).

Принятие той или иной конструктивной схемы зависит от вида проектируе­мого здания, его этажности и других фак­торов. Так, крупнопанельные жилые до­ма проектируют, как правило, бескар­касными. Эти дома по сравнению с каркасными позволяют уменьшить чис­ло типоразмеров сборных элементов, со­кратить расход металла, упростить про­цесс монтажа, сократить трудозатраты, избежать появления выступающих эле­ментов (колонн и ригелей) в интерьере помещений и др. Однако каркасные зда­ния по сравнению с бескаркасными имеют меньший расход материалов на 1 м2 жилой площади, большую жесткость и устойчивость здания, что особенно важ­но для высотных зданий. Эти схемы осо­бенно эффективны для общественных зданий.

Важным этапом проектирования круп­нопанельных зданий является выбор схемы разрезки стен, которая зависит от конструктивной схемы, условий монтажа, вида здания и его размеров.

 

 

Рис. 12.1. Конструктивные схемы бескаркасных крупнопанельных зданий

 

 

Рис. 12.2. Конструктивные схемы каркасно-панельных

зданий

 

 

Рис. 12.3. Схемы разрезки наружных стен на панели:

а - горизонтальная на одну комнату, б - то же, на две комнаты, в - то же, полосовая, г -вертикальная, д — то же, полосовая

 

На рис. 12.3 приведены примеры схем разрезки (чле­нения) наружных стен на панели, приме­няемые в современном строительстве.

Горизонтальная схема члене­ния (рис. 123, а, б, в) образуется одно­этажными панелями размером на одну комнату (с одним окном), на две ком­наты и полосовая (из полосовых поясных и простеночных панелей). Вертикальная схема образуется из панелей на два зтажа (рис.12.3,г,д): с одним окном на зтаж и полосовая из двухэтажных про­стеночных панелей и междуэтажных по­ясных панелей. В гражданском строи­тельстве большее распространение полу­чила горизонтальная схема разрезки стен.

Конструкции стеновых панелей

 

К стеновым панелям кроме основных требований, предъявляемых к обычным стенам (прочность, устойчивость, малая теплопроводность, небольшая масса, эко­номичность, огнестойкость и др.), предъ­являют такие специфические требования, как технологичность изготовления в за­водских условиях и простота монтажа, совершенство конструкций стыков, высо­кая степень заводской готовности.

 

Рис. 12.4. Однослойная стеновая панель:

1 — наружный декоративный (защитный) слой, 2 — арматурный каркас, 3 — эффективный утеплитель, 4 — панель отопления, 5 — внутренний отделочный слой, 6 — монтажная петля

 

Стеновые панели ввиду их значитель­ной длины и высоты при небольшой тол­щине не обладают самостоятельной устойчивостью. Эта устойчивость обеспе­чивается креплением панелей между со­бой, с конструкциями перекрытий и др. В зависимости от вида конструктивной схемы стеновые панели делятся на несу­щие, самонесущие и навесные. Панели наружных стен могут быть одно-и многослойными.

Однослойные панели изгото­вляют из однородного малотеплопровод­ного материала (легкого или ячеистого бетона), класс прочности которого дол­жен соответствовать воспринимаемым нагрузкам, а толщина, кроме того, учитывать климатические условия района строительства.   Панель армируется сварным каркасом и сеткой.

С наружной стороны панели имеют за­щитный слой из тяжелого бетона толщи­ной 20...40 мм или декоративного плот­ного бетона (для защиты от атмос­ферных влияний) и с внутренней сто­роны — отделочный слой из цементного или известково-цементного раствора тол­щиной 10... 15 мм.

Хорошим материалом для одно­слойных панелей является ячеистый бе­тон плотностью 600...700 кг/м3. Толщина панелей из ячеистого бетона зависит от климатических условий и принимается от 240 до 320 мм. Эти панели применяют для зданий с поперечными несущими сте­нами, а наружные стеновые панели являются самонесущими. Торцовые стены состоят из двух панелей: внутрен­ней несущей — из железобетона и наруж­ной самонесущей — из ячеистого бетона. Однослойные панели имеют простые кон­структивные решения и технологию изго-товления.

Широко применяют однослойные керамзитобетонные панели класса В5 плот­ностью 800... 1100 кг/м3 (рис. .12.4). На­ружная поверхность панели имеет фак­турный слой толщиной 20 мм из декора­тивного бетона, а внутренняя — отде­лочный слой толщиной 10 мм из раство­ра, укладываемого в форму при изгото­влении панели. После монтажа панели производят ее шпаклевку и окрашивают с внутренней стороны или оклеивают обоями.

Двухслойные панели состоят из несущего слоя из плотного легкого или тяжелого бетона класса В10...В15 плотностью более 1000 кг/м3 и утепляю­щего слоя — из теплоизоляционного лег­кого или ячеистого бетона или жестких термоизоляционных плит. Толщина несу­щего слоя для стеновых панелей должна быть не менее 60 мм, и располагают его с внутренней стороны помещения, чтобы он одновременно являлся и пароизоляционным.

 

Рис. 12.5. Двухслойная стеновая панель из легкого бетона:

1 — закладные детали для крепления радиаторов, 2 — закладные детали, 3 — монтажные петли, 4 — каркас, 5 — несущий слой, 6 — отделочный слой, 7 — слив, 8 — подоконная доска, 9 — крупнопористый (теплоизоляционный) бетон

 

 

Теплоизоляционный слой сна­ружи защищают слоем декоративного бе­тона или раствора марки 50...70 толщи­ной 15...20 мм. Если применяют утепли­тель в виде полужестких термоизоля­ционных плит или укладываемых спосо­бом заливки, то несущий железобе­тонный слой принимают ребрами по контуру или часторебристым. На рис. 12.5 показана конструкция двухслой­ной панели наружной стены из легкого бетона.

Трехслойные панели состоят из двух тонких железобетонных плит и эф­фективного теплоизоляционного слоя (утеплителя), укладываемого между ними (рис. 12.6). В качестве утеплителя приме­няют полужесткие минераловатные плиты, минеральную пробку, цементный фибролит, асбестоцементные плиты, ми­нераловатные маты на фенольной связке, маты из стекловолокна, а также жесткие утеплители — пеностекло, пенокералит,

пеносиликат и др. Железобетонные слои панели соединяют между собой сварны­ми арматурными каркасами. Внутренний слой трехслойной панели принимают толщиной 80 мм, а наружный — 50 мм. Толщину слоя утеплителя определяют те­плотехническим расчетом.

Весьма эффективными являются асбе­стоцементные панели, которые могут иметь каркасную и бескаркасную кон­струкцию. Каркасная панель (рис. 12.7) состоит из двух асбестоцементных ли­стов: наружного толщиной 10 мм, вну­треннего — 8 мм и каркаса между ними из асбестоцементных брусков специаль­ного профиля. Внутри панели заклады­вают утеплитель. Плиты крепят к карка­су на прочном полимерном клею.

Бескаркасные панели состоят из наруж­ного асбестоцементного листа толщиной 10 мм, которому придается коробчатая форма, и второго плоского листа, обра­зующего внутреннюю поверхность пане­ли. Между листами укладывают утеплитель. Толщина панели 140 мм, поверх­ностная плотность 70 кг/м2. К бескар­касным также относят трехслойные пане­ли типа «сэндвич» из трех слоев фибро­лита, склеенных цементным раствором и облицованных с обеих сторон плоскими асбестоцементными листами. В настоя­щее время применяют стеновые панели из пластических масс.

Несущие панели внутренних стен вы­полняют из тяжелого и легкого бетона (шлакобетона, керамзитобетона и др.), а также ячеистых и силикатных бетонов. По конструктивному решению несущие панели внутренних стен могут быть сплошными, пустотелыми, часторе-бристыми и с ребрами по контуру (рис. 12.8).

 

Рис. 12.6. Трехслойная стеновая панель:

1 — сварные каркасы, покрытые бетоном, 2 — монтажные петли, 3 — закладные детали, 4 — арматурные сетки, 5 — утеплитель, б — тяжелый бетон

 

 

Рис. 12.7. Асбестоцементные каркасные стеновые панели:

а — общий вид, б — конструкция утепления панели минераловатным войлоком с противоосадочными поло­сами с одной стороны, в — то же, с двух сторон, г — утепление древесноволокнистыми плитами в два слоя, д — то же, в три слоя,

1 — элементы каркаса, 2 — противоосадочные полосы,

3 — асбестоцементные листы, 4 — минераловатный войлок, 5 — древесноволокнистые плиты, 6 — прокладка из древесноволокнистых плит

 

Рис. 12.8. Несущие панели внутренних стен:

 

а — сплошная однослойная, б — многопустотная, в — часторебристая, г — с ребрами по контуру, 1 — сварные каркасы, 2 — то же, для крепления коробки, 3 — монтажные петли, 4 — закладные детали, 5 — деревянные пробки, 6 — сварные сетки, 7 - пустоты (круглые и овальные)

 

Стыки стеновых панелей

 

Как уже указывалось выше, эксплуата­ционные качества крупнопанельных до­мов во многом зависят от конструктив­ного исполнения стыков между панелями и с другими элементами здания.

Стыки между панелями наружных стен должны быть герметичными (т. е. иметь малую воздухопроницаемость и исклю­чать проникание дождевой воды внутрь конструкции), не допускать образования конденсата в месте стыка (вследствие не­достаточных теплозащитных свойств), обладать достаточной прочностью, чтобы предохранить стык от появления в нем трещин.

При конструировании крупнопа­нельных зданий необходимо учитывать также особенности работы стен.

 

 

Рис. 12.9. Конструкция вертикального упруго-податливого стыка панелей:

 

1— стальная накладка, 2 — закладныедетали, 3 — тяжелый бетон, 4— термовкладыш, 5— полоса гидроизола или рубероида, 6 — гернит или пароизол, 7— растворили герметик

 

Если в кирпичных стенах нагрузки распреде­ляются равномерно, то в крупнопа­нельных они концентрируются в местах стыкования панелей. Кроме того, под влиянием изменений температуры ме­няются линейные размеры стены. Это происходит из-за воздействия на поверх­ности панели положительной (с внутренней стороны) и отрицательной (с наруж­ной стороны) температуры, в результате чего изменяются ее линейные размеры. Возникающие при этом усилия приводят к образованию трещин.

По расположению стыки различают вертикальные и горизонтальные. Вер­тикальные стыки по способу свя­зей панелей между собой разделяют на упругоподатливые и жесткие (моно­литные). При устройстве упругоподатливого стыка (рис. 12.9) панели соединяют­ся с помощью стальных связей, привари­ваемых к закладным деталям стыкуемых элементов. В паз, образуемый четвертя­ми, входит на глубину 50 мм стеновая панель внутренней поперечной стены. Со­единяют панели с помощью накладки из полосовой стали, привариваемой к за­кладным деталям панелей. Для гермети­зации стыка в его узкую щель заводят уплотнительный шнур гернита на клею или пороизола на мастике. С наружной стороны стык промазывают специальной мастикой — тиоколовым герметиком.

Для изоляции от проникновения влаги с внутренней стороны стыка наклеивают на битумной мастике вертикальную до-лоску из одного слоя гидроизола или ру­бероида. Вертикальный колодец стыка заполняют тяжелым бетоном.

Недостатком упругоподатливых сты­ков является возможность коррозии стальных связей й закладных деталей. Та­кие крепления податливы и не всегда обеспечивают длительную совместную работу сопрягаемых панелей и, следова­тельно, не могут предохранить стык от появления трещин. Это происходит пото­му, что от нагрева при сварке закладная деталь как бы отрывается от бетона, в который она была замоноличена при изготовлении. Проникающая в щель ат­мосферная или конденсационная влага разрушает нижнюю поверхность заклад­ной детали. Для защиты от коррозии их покры­вают на заводе со всех сторон цинком путем распыления, горячего цинкования или гальванизации. После сварки при монтаже панели защитный слой с лице­вой стороны закладной детали и связи-накладки восстанавливается с помощью газопламенной металлизации. Кроме то­го, оцинкованные стальные элементы за­щищают замоноличиванием их цементно-песчаным раствором (1:1.5... 1:2) тол­щиной не менее 20 мм.

Более надежными в работе являются жесткие монолитные стыки. Прочность соединения между стыкуемыми элемента­ми обеспечивается замоноличиванием со­единяющей стальной арматуры бетоном. На рис. 12.10 показан монолитный стык однослойных стеновых панелей с пет­левыми выпусками арматуры, соеди­ненными скобами из круглой стали диа­метром 12 мм. Между замоноличенной зоной стыка и герметизацией образована вертикальная воздушная полость, кото­рая служит дренажным каналом, отводя­щим попадающую внутрь шва воду с вы­пуском ее наружу на уровне цоколя. Нередко в стык панелей для повышения его теплозащитных свойств укладывают минераловатный вкладыш, обернутый полиэтиленовой пленкой, или из пенопла­ста (рис. 12.11).

Для устройства жестких стыков ис­пользуют также сварные анкеры-связи (рис. 12.12), которые представляют собой Т-образные элементы, изготовленные из полосовой стали и располагаемые в сты­ке «на ребро». При этом в стеновых пане­лях оставляют концевые выпуски арматуры (в пределах габарита форм), ко­торые приваривают после установки па­нелей к концам анкеров. Такое соедине­ние позволяет обеспечить возможность плотного заполнения полости стыка бе­тоном, уменьшить почти в три раза рас­ход стали.

Интересным является устройство стыка в виде ласточкина хвоста, разработанное в ЦНИИЭПжилища. При этом почти полностью можно отказаться от приме­нения стальных связей (рис. 12.13).

Для устройства горизонтальных стыков верхнюю стеновую панель укладывают на нижнюю на цементном растворе. При этом через горизон­тальный шов, плотно заполненный рас­твором, дождевая вода может проникать главным образом вследствие капиллярно­го подсоса воды через раствор. Вот поче­му принята такая сложная геометрия го­ризонтального стыка (рис. 12.14). В нем устраивают так называемый противодо­ждевой барьер или зуб в виде гребня, идущего сверху вниз. На наклонной части раствор прерывают и создают воз­душный зазор, в пределах которого подъ­ем влаги по капиллярам прекращается.

Таким образом, мы видим, что для обеспечения нормальных эксплуата­ционных качеств стен из крупных панелей для устройства стыков применяют раз­личные материалы, имеющие самые раз­нообразные физико-механические свой­ства: крепежные (сталь), утепляющие (минераловатные вкладыши), гидроизо­лирующие (рубероид или изол), связую­щие и уплотняющие (бетон и раствор), герметизирующие (пороизол или гернит и мастики). Все эти материалы имеют разную долговечность и часто гораздо меньшую срока службы здания. Вот по­чему при конструировании стыков пане­лей и их исполнении необходимо особое внимание уделять возможности обеспече­ния высокого качества производства строительных работ, применяя для этого материалы только с хорошими физико-механическими свойствами.

 

 

Рис. 12.10. Монолитный вертикальный стык:

 

а — вертикальный стык, 6 — то же, с утепляющим па­кетом,

1 — наружная керамзитобетониая панель, 2 — анкер диаметром 12 мм, 3 — дренажный канал, 4 — пороизоловый жгут, 5 — герметик, 6 — прокладка, 7 — скобы, 8 — бетон, 9 — внутренняя несущая панель из железобетона, 10 — петля, 11 — минераловатный пакет

 

 

Рис. 12.11. Жесткий вертикальный стык трех­слойных стеновых панелей:

 

1 — герметик, 2 — рубероид или гидроизол, 3 — термо­вкладыш (минераловатный пакет, обернутый плен­кой), 4 — термоизоляционный слой панели, 5 — тяжелый бетон

 

 

Рис. 12.12. Соединение стеновых панелей с по­мощью сварного стального анкера-связи:

1 — арматурные выпуски из панелей, 2 — сварные швы,

3 — Т-образный анкер-связь, I — деталь анке­ра-связи

           

 

Рис. 12.13. Безметалльный стык панелей;

 

а — горизонтальный стык, б — вертикальный стык, в — схема ланели, 1 — герметизирующая мастика, 2 — уплотнительный шнур, 3 — панель наружной стены, 4 — раствор, 5 — утеплитель, б — панель пере­крытия, 7 — панель внутренней поперечной стены, 8 — гернит или пороизол, 9 — шпонка

 

Рис. 12.14. Конструкция горизонтального сты­ка однослойных стеновых панелей:

 

1 — железобетонная панель перекрытия, 2 — цемент­ный раствор, 3 — стеновая панель, 4 — противодождевой барьер, 5 — герметизирующая мастика (тиоколовая или полиизобутиленовая УМС-50), 6  — пороизол или гернит, 7 — термовкладыш в гидро­изоляционной оболочке

 

Соединение панелей внутренних стен бескаркасных зданий (рис. 12.15) осущест­вляется путем сварки соединительных стержней диаметром 12 мм к закладным деталям по верху панели. Вертикальные швы между панелями заполняют упругими прокладками из антисептированных мягких древесноволокнистых плит, обер­нутых толем, а вертикальный канал за­полняют мелкозернистым бетоном или раствором.

На рис. 12.16 показан узел отирания плит перекрытия на внутреннюю панель и соединение панелей с помощью само­фиксирующего болта.

Нередко горизонтальный стык между несущими панелями поперечных стен и перекрытий проектируют платформен­ного типа (рис. 12.17), особенностью ко­торого является опирание перекрытий на половину толщины поперечных стеновых панелей, при котором усилия в верхней стеновой панели на нижнюю передаются через опорные части панелей перекрытий. Швы между панелями и плитами вы­полняют на растворе. Однако в случае неполного заполнения швов раствором в отдельных участках панелей может воз никнуть опасность концентрации напря­жения.

 

 

Рис. 12.15. Конструкция стыка внутренних стен:

 

а — на уровне перекрытий, б — на уровне сечения панелей, 1 — соединительные стержни диаметром 12 мм, 2 — закладные детали, 3 — монолитный бетон, 4 — панель продольной внутренней стены, 5 — упругая прокладка (антисептированная мягкая древесноволокнистая плита, обернутая толем), 6 — цементный раствор

 

Рис. 12.16. Конструкция соединения панелей внутренних стен и перекрытий:

 

1 — цементный раствор, 2 — стеновая внутренняя панель,

3 — паз длиной 100 мм, 4 — самофиксирую­щийся болт диаметром 25 мм, 5 — панель перекрытия

Рис. 12.17. Конструкция горизонтального плат­форменного стыка панелей внутренних попе­речных несущих стен:

 

1 — панель внутренней стены, 2 — панель перекры­тия,

3 - цементно-песчаная паста

 

Чтобы предотвратить это явле­ние, для стыковых соединений приме­няют цементно-песчаную пластифициро­ванную пасту, из которой можно полу­чать тонкие швы толщиной 4...5 мм. Такая паста состоит из портландцемента марки 400...500 и мелкого песка с макси­мальным размером частиц 0,6 мм (состав 1:1) с добавлением пластифицирующей и противоморозной добавки нитрата на­трия в количестве 5... 10% от массы це­мента. Такая паста как бы склеивает па­нели между собой.

При строительстве крупнопанельных зданий существует много других кон­струкций стыков, однако требования к ним и принципы исполнения являются общими.

 










Последнее изменение этой страницы: 2018-06-01; просмотров: 214.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...