Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Наследование признаков, сцепленных с полом и ограниченных полом




Сцепленными с полом называют признаки, развитие которых обусловлено генами, расположенными в половых хромосомах.

Если ген находится в У-хромосоме, то он наследуется у человека, млекопитающих - от отца к сыну, а у птиц - от матери к дочери.

Если ген располагается в Х-хромосоме, наследование будет более сложным. Впервые особенности наследования генов, сцепленных с Х-хромосомой были открыты в опытах на дрозофиле при изучении наследования окраски глаз. Красная окраска глаз доминирует над белой.

При скрещивании гомозиготной красноглазой самки с белоглазым самцом в F1 все потомство красноглазое.

 

Р ♀ ХАХА х ♂ХªУ

        кр.              бел.

G     (XА)         (Xª) (У)

F1     XАXª х    XАУ

         кр.                кр.

G  (ХА)   (Xª)     (XА) (У)

F2    ХАХА , ХАХª, ХАУ, ХªУ

       кр.      кр.  кр. бел.

 

При скрещивании гибридов первого поколения друг с другом в F2 происходит расщепление по фенотипу: 3 красноглазые особи: 1 белоглазая, и белоглазыми бывают только самцы.

При реципрокном (обратном) скрещивании, когда самка гомозиготная по гену белоглазости, скрещивается с красноглазым самцом, расщепление в F1 по фенотипу 1:1. При этом белоглазыми будут только самцы. При скрещивании мух F1 между собой в F2 будут мухи с обоими признаками в равном отношении 1:1, как среди самок, так и среди самцов.

 

 

Р ♀ ХªХª  х ♂ХА У

     бел.               кр.

 G  (Хª)           (ХА) (У)

 F1   ХАХª    х  ХªУ

       кр.                  бел.

 G (ХА) (Хª)      (Хª) (У)

F2 ХАХª, ХªХª, ХАУ, ХªУ

        кр.   бел.   кр.     бел.

Из результатов опыта Моргана можно заключить, что гены окраски глаз расположены только в половой Х-хромосоме. Результаты скрещивания зависят от того, какой пол несет доминантный признак.

Наследование, сцепленное с полом, необходимо отличать от наследования, ограниченного полом.

Развитие признаков (ограниченных полом) обусловлено генами, расположенными в аутосомах (а не в половых хромосомах), но на проявление признаков в фенотипе сильно влияет пол, т.е. развитие признака зависит от влияния половых гормонов.

Например, облысение со лба, типично для мужчин. У мужчин под действием мужских половых гормонов (тестостерона) ген ведет себя как доминантный. Еще пример, тембр голоса - баритон и бас - характерны только для мужчин.

 

             Сцепление генов. Опыты и правило Моргана

Изучение сцепленного с полом наследования стимулировало изучение сцепления между генами, находящимися в аутосомах.

Для любого организма характерно видовое постоянство хромосом в кариотипе. Генов, определяющих признаки, у организмов намного больше, чем хромосом. Например, у мухи дрозофилы 8 хромосом в соматических клетках, а генов около 1000. Значит,  в каждой хромосоме находится много генов.

Гены, локализованные в одной хромосоме, образуют группы сцепления.

Число групп сцепления равно гаплоидному числу хромосом.

Наследование генов, локализованных в одной хромосоме, называется сцепленным наследованием.

В начале ХХ века Т. Морган и его сотрудники описали явление сцепления генов - совместную передачу групп генов из поколения в поколение.

Опыты проводились на мухах дрозофилах с учетом двух пар альтернативных признаков:

Цвет тела – серый (В) и черный (в)

Длина крыльев – нормальные (V) и короткие (v)

 

У мухи - дрозофилы окраски тела и длины крыльев находятся в одной паре гомологичных хромосом, т.е. относятся к одной группе сцепления, что и было доказано в опытах. Запись генотипов при сцеплении видоизменяется: генотип записывается BV

                                     ═

                                     bv

 (две черточки означают, что организм диплоидный).

При скрещивании мух, имеющих серый цвет тела и нормальные крылья с мухами черного цвета и короткими крыльями в F1 все мухи имели серый цвет тела и нормальные крылья.

 Запись схемы скрещивания:

 

P ♀BV        ♂bv

       ═   x    ═

       BV          bv

    сер.нор.  чер.кор.

G   (BV)          (bv)

             BV

 F1          ═

              bv

 

 Провели анализирующее скрещивание. В первом случае скрестили гибридного самца с серым телом и нормальными крыльями

с черной самкой, имеющей короткие крылья, и в результате скрещивания получили 2 типа потомков, похожих на родителей в соотношении 1:1.

Ген серого цвета тела и ген нормального строения крыльев передаются вместе, а ген черного цвета тела и ген коротких крыльев тоже вместе. Этот опыт демонстрирует полное сцепление. Причина его заключается в том, что гены, обуславливающие два различных признака, лежат в одной хромосоме. Это видно на схеме полного сцепления:

 

Р ♀bv     ♂BV

    ═  x ═

    bv         bv

G ( bv)          ( BV ) (bv)

        BV   bv

F1     ═      ═

        bv   bv

          1:1

 

Другой результат получается, если для анализирующего скрещивания брать гибридную самку с серым телом и нормальными крыльями и рецессивного по обоим признакам самца.

 В этом случае появилось четыре типа потомков в соотношении:

серых длиннокрылых - 41, 5 %; серых короткокрылых - 8, 5 %,

черных длиннокрылых - 8, 5% , черных короткокрылых - 41, 5 %.

 

В этом случае имеет место неполное сцепление:

Р  ♀BV         ♂ bv

        ═     x     ═

        bv              bv

G ( BV) (bv)

   некроссов.    ( bv)

   (Bv) (bV)

    кроссов.

   BV     bv     Bv       bV

F1 ═             ═      ═         ═

   bv       bv     bv       bv

41,5% 41,5% 8,5% 8,5%

Причиной неполного сцепления генов является кроссинговер (перекрест хромосом) и обмен участками между гомологичными хромосомами в профазе I деления мейоза при созревании половых клеток. Кроссинговер происходит у самок, у самцов дрозофил кроссинговер не происходит (установлено, что для особей гетерогаметного пола характерна более низкая частота кроссинговер).

При изучении результатов скрещивания получается 4 фенотипа среди потомков:

17%(8, 5+8, 5) особей образовались из кроссоверныхгамет

83%(41, 4+41, 5) особей образовались из некроссоверныхгамет.

Частота кроссинговера зависит от расстояния между генами в хромосоме. Расстояние между генами выражается в процентах кроссинговера между ними и обозначается в морганидах.

Изучение Морганом сцепления генов представляет собой закономерное биологическое явление.

Гены, локализованные в одной хромосоме, наследуются, сцеплено, причем сила сцепления зависит от расстояния между генами. Эта закономерность получила название  правило Моргана.

.

Основные положения хромосомной теории наследственности

Основные положения хромосомной теории наследственности сводятся к следующему:

- носителями наследственной информации являются хромо-

сомы и расположенные в них гены,

- гены расположены в хромосоме в линейном порядке друг за

другом в определенных локусах. Аллельные гены занимают

одинаковые локусы гомологичных хромосом,

- гены, расположенные в одной хромосоме, образуют группы

 сцепления и наследуются преимущественно вместе. Число

   групп сцепления равно гаплоидному набору хромосом,

- между гомологичными хромосомами возможен обмен участ-

ками - кроссинговер, который нарушает сцепление генов.

Сила сцепления зависит от расстояния между генами,

- процент кроссинговера пропорционален расстоянию между

 генами. За единицу расстояния принимается 1 морганида,

которая равна 1% кроссинговера,

- при неполном сцеплении в сумме вероятность некроссовер-

ных гамет (гибридов) всегда больше, чем 50%,

- при расстоянии в 50 морганид и больше признаки наследуют-

ся независимо, несмотря на то, что локализованы в 1 хромо-

соме.

 

 

                                                                                                                            

                                                                                          Лекция 11

                Молекулярная генетика

План

1. Этапы развития молекулярной генетики.

2. Генетический код и его свойства.

3. Функционально-генетическая классификация генов.

4. Функциональная активность генов (экспрессия генов).

5. Регуляция экспрессии генов у про - и эукариот.

 

Молекулярная генетика занимается изучением структурно-функциональной организации генетического аппарата клеток и механизма реализации наследственной информации.

 

     Этапы развития молекулярной генетики

Молекулярная генетика выделилась из биохимии и сформировалась как самостоятельная наука в 50-х годах прошлого столетия. Рождение этой науки связано с рядом важных биологических открытий:

1). В 20-40 гг. ХХ века было установлено, что носителем наследственной информации в клетке является молекула ДНК, а не белок, как считали раньше. Были получены прямые доказательства роли ДНК в наследственности. Это явления трансформации, трансдукции, половой процесс у бактерий, строение вируса, а также обнаружение почти полной идентичности химического состава ДНК (но не белков) у всех представителей данного биологического вида.

Данные о видовой специфичности строения ДНК получены в начале 50-х годов Эрвином Чаргаффом и его сотрудниками. Любая ДНК состоит из четырех типов нуклеотидов, содержащих одно из четырех азотистых оснований: аденин, тимин, гуанин, цитозин. Чаргафф с сотрудниками обнаружил, что соотношения между нуклеотидами, входящими в состав ДНК одинаковы в пределах вида и различаются у разных видов. Кроме того, число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых равно числу цитозиловых. Это открытие послужило главным ключом к выявлению структуры молекулы ДНК.

Трансформация у бактерий – это передача от одной бактериальной клетки другой наследственного материала. В 1928 году Фред Гриффит изучал трансформацию у двух штаммов пневмококка: вирулентного (вызывающего гибель мышей) и авирулентного (не вызывающего гибели).

Если убить вирулентные бактерии и вводить их вместе с живыми авирулентными, то часть животных все равно погибнет. Этот опыт свидетельствовал о том, что часть генетического материала из вирулентных бактерий проникла в авирулентные и сделала их вирулентными. После того как вирулентные клетки разделили на отдельные компоненты: углеводы, липиды, белки и ДНК, было обнаружено, что именно ДНК наделило живые бактерии генетическим признаком, которого у них до этого не было.

   Трансдукция – это явление, заключающееся в том, что вирусы, выходя из бактериальной клетки, в которой они паразитировали, могут захватывать с собой часть ДНК и, перемещаясь в новые клетки передавать им признаки прежних хозяев.

Так, при внесении в неподвижные бактерии вирусов, размножавшихся в клетках подвижных культур, некоторые из бактерий становятся подвижными.

Половой процесс у бактерий – коньюгация, когда происходит обмен молекулами ДНК, и хотя новые бактерии не образуются, но их наследственный материал изменяется, т.к. происходит рекомбинация генетического материала.

Строение вируса или бактериофага: вирус состоит из молекулы ДНК (или РНК), заключенной в белковую оболочку. С помощью радиоизотопов было доказано, что именно ДНК проникает в клетку, а белковая оболочка остается снаружи. В результате образуются новые фаговые частицы. Таким образом, ДНК является носителем генетической информации и дает начало новым бактериофагам.

   Косвенные доказательства: в соматических клетках разных органов содержится одинаковое количество ДНК, вдвое большее, чем в половых. Количество белков варьирует и не всегда больше, чем в половых.

2).Следующий этап развития молекулярной генетики связан с таким важным открытием, как установление структурной организации молекулы ДНК– в 1953 году. Крик и Уотсон установили, что ДНК состоит из двух спирально-закрученных цепей.

В настоящее время принято говорить о первичной, вторичной и третичной структуре ДНК: Первичной структурой ДНК называют линейную полинуклеотидную цепь, в которой мононуклеотиды соединены 3`,5`- фосфоэфирными связями. Модель Крика и Уотсона – это вторичная структура ДНК, основанная на принципе комплементарности и получившая название двойной спирали. Один виток спирали состоит из 10 нуклеотидов, размер витка 3,4 нм.

Дополнительное структурирование в пространстве двуспиральной молекулы ДНК (в конденсированных хромосомах) с образованием суперспирали является третичной структурой.

3).Определение направления передачи информации – «один ген – один фермент» - Бидл и Татум – 50-е годы. (В настоящее время – один ген – один полипептид).

4).Расшифровка генетического кода – Ниренберг, Очоа (К 1964 году расшифрованы коды для всех аминокислот). Выяснение механизма экспрессии генов у прокариот и ее регуляции – Франсуа Жакоб и Жан Моно – 50-е годы.

5).70-е годы и до настоящего времени – выявление особенностей экспрессии генов у эукариот. Развитие генетической инженерии.

 

                           Генетический код и его свойства

   Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в молекуле ДНК.

Свойства генетического кода:

1.Код триплетен – каждая аминокислота зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном.

2.Код вырожден – каждая аминокислота кодируется более чем одним кодоном. (Исключения – аминокислоты метионин и триптофан. Они кодируются одним кодоном.)

3.Код универсален – одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов.

4.Генетический код не перекрывающийся – триплеты нуклеотидов не перекрывают друг друга. У некоторых вирусов обнаружено перекрывание, но это исключение.

5.Имеются стартовый и терминальный кодоны. Стартовый – единый для всех – АУГ. Терминальный трех видов – УАГ, УАА, УГА.

 

Функционально-генетическая классификация генов

 

В настоящее время ген рассматривается как единица функционирования наследственного материала. Ген – это участок молекулы ДНК, ответственный за синтез одного полипептида.

Различают три вида генов:

- структурные;

- модуляторы;

- регуляторы.

   Структурные гены несут информацию об аминокислотах в белках, ферментах, а также о последовательности нуклеотидов в молекулах р-РНК и т-РНК.

   Гены-модуляторы влияют на функционирование структурных генов, могут смещать в ту или иную сторону процесс развития признака. Они подразделяются на:

1)ингибиторы или супрессоры (эпистатичные гены),

2)интенсификаторы – могут повышать способность структурных генов к мутациям,

3)модификаторы – могут влиять на структурные гены по типу комлементарности.

   Гены-регуляторы контролируют синтез регуляторных белков, а также время включения различных структурных генов в процессе индивидуального развития.

Свойства генов:

1. Дискретность действия – каждый ген действует как самостоятельная единица наследственности.

2. Стабильность – при отсутствии мутаций ген передается в ряду поколений в неизмененном виде.

3. Специфичность действия – каждый ген влияет на развитие своего определенного признака.

4. Плейотропия – способность одного гена обеспечивать развитие одновременно нескольких признаков (синдром Марфана).

5. Присутствие в виде двух у диплоидных и большего числа аллелей у полиплоидных организмов.

6. Действие гена дозировано, при изменении числа доз гена в организме изменяется признак (например, при болезни Дауна происходит увеличение до трех доз генов 21 хромосомы)

 

      Функциональная активность генов или экспрессия генов

У прокариот она осуществляется в два этапа: транскрипция и трансляция.У эукариот есть еще стадия процессинга.

Экспрессия генов заключается в синтезе на молекуле ДНК молекулы и-РНК, комлементарной ей (или транскрипции – переписывание, считывание биологической информации) и дальнейшее ее использование для синтеза белка. Единицей транскрипции в ДНК является транскриптон, превышающий по размерам структурные гены. Транскриптон в клетках эукариот состоит из неинформативной (акцепторной) и информативной зоны. Неинформативная зона начинается геном-промотором (участок из 80 нуклеотидов), к которому присоединяется фермент РНК-полимераза, катализирующая процесс считывания. У прокариот один вид РНК-полимеразы, у эукариот три.

За геном промотором находятся гены-операторы, которые связывают регуляторные белки (белки, включающие и прекращающие транскрипцию).

Информативная зона состоит из структурных генов, располагающихся за генами операторами. Структурные гены эукариот разделены спейсерами – участками ДНК, не несущими информации.

Кроме того, в составе самих структурных генов есть информационные участки – экзоны и неинформационные – интроны. У пркариот спейсеров, экзонов и интронов нет.

В каждой фазе жизненного цикла в клетке транскрибируется только 10% структурных генов, а остальные гены не активны, но часть из них может включаться в других фазах жизненного цикла.

В результате транскрипции у прокариот сразу образуется м-РНК (зрелая РНК) и сразу же начинается процесс трансляции.

У эукариот транскрибируется большая молекула и-РНК, содержащая все неинформативные участки. Она называется РНК-предшественница или пре-РНК. Поэтому за транскрипцией наступает процессинг, в результате, которого разрушаются все неинформативные участки: акцепторная зона, спейсеры и интроны, а оставшиеся экзоны сшиваются (сплайсинг).

На этапе процессинга к начальному отрезку образовавшейся РНК присоединяется последовательность нуклеотидов, называемая колпачком, к концевому – последовательность остатков аденина – поли- A.

В процессинге происходит модификация нуклеотидов в РНК, например, их метилирование, гидрирование.

И только после этих превращений образуется зрелая м-РНК, которая начинается вводной последовательностью, называемой лидером, и заканчивается концевой последовательностью – трейлером. Лидер – вводная последовательность нуклеотидов, комплементарная последовательности в молекуле р-РНК малой субъединице рибосом, которая обеспечивает прикрепление и-РНК к малой субъединице. Трейлер включает нонсенс-кодон и поли-А последовательность.

Кодовым элементом м-РНК является триплет нуклеотидов, называемый кодоном. Каждому кодону соответствует определенная аминокислота.

Первичной структурой РНК является, как и в ДНК, линейная цепь полинуклеотидов, в которой мононуклеотиды соединены 3`,5`-фосфоэфирными связями.

Вторичная структура РНК – изогнутая цепь, а третичная представляет собой нить, намотанную на катушку, роль катушки играет особый транспортный белок – информатор.

Образующаяся м-РНК идет в цитоплазму к месту синтеза полипептида (белка), т.е. к рибосомам.

На рибосомах осуществляется процесс трансляции. Трансляция – это механизм, с помощью которого последовательность нуклеотидов в молекулах м-РНК переводится в специфическую последовательность аминокислот в полипептидной цепи.

Трансляция складывается из трех стадий:

1. Инициация – начало синтеза полипептида.

2. Элонгация – удлинение полипептида.

3. Терминация – окончание синтеза полипептида.

На этапе инициации меньшая субъединица рибосомы узнает стартовый кодон АУГ м-РНК и прикрепляется к ней. АУГ занимает первую позицию. После этого присоединяется большая субъединица рибосомы и в ней начинается собственно синтез белка. К большой субъединице подходит т-РНК с аминокислотой.

 

 

В молекуле т-РНК одна ее часть присоединяет аминокислоту, а другая – антикодон, спаривается с колоном м-РНК, определяющим эту аминокислоту.

 

 

В большой субъединице есть:

1 – аминоацильный участок

2 – пептидильный участок

 

В т-РНК, антикодон которой комплементарен кодону АУГ

м-РНК приносит аминокислоту метианин и останавливается в аминоацильном участке. Стадия инициации контролируется факторами инициации. У прокариот их 3, у эукариот 6-7.

Вторая стадия – элонгации начинается с перемещения т-РНК с метианином в пептидильный участок, а на ее место приходит другая т -РНК  с новой аминокислотой. Между двумя аминокислотами образуется  пептидная связь. Тем временем рибосома продвигается вдоль м-РНК, на рибосоме оказывается новый кодон, к которому вскоре присоединяется своим антикодоном соответствующая т-РНК.

Все это повторяется многократно, до тех пор, пока рибосома не

дойдет до одного из терминальных кодонов (УАА, УАГ, УГА).

 Этим кодонам нет антикодона, нет аминокислоты. Наступает фаза терминации. К одной молекуле м-РНК прикрепляется обычно много

рибосом и образуются полисомы.

В процессе трансляции наряду с факторами инициации и элонгации важное значение имеет фермент, связывающий т-РНК с аминоацильным участком – аминоацил т-РНКаза.

 

          Регуляция экспрессии генов у про- и эукариот

У прокариот она осуществляется на уровне промотора, оператора

 и трансляции.

У эукариот регуляция происходит на всех этапах экспрессии: транскрипции, процессинга и трансляции.

Подробнее остановимся на регуляции экспрессии генов у бактерий.

 

 

                       Регуляция экспрессии генов у прокариот

Схема регуляции транскрипции структурных генов прокариотической клетки по типу репрессии

Схема регуляции транскрипции структурных генов прокариотической клетки по типу индукции

 

В 1961 году Жакоб и Моно установили, что у бактерий под контролем гена-регулятора синтезируется белок-репрессор, который регулирует активность других генов. Белок-репрессор связывается с геном-оператором и блокирует его, вследствие чего транскрипция (считывание информации) становится невозможной и клетка не может синтезировать соответствующие белки. Но если в клетку проникает какой-либо субстрат, для расщепления которого необходимо синтезировать ферменты, то происходит следующее: субстрат присоединяется к репрессору и лишает его способности блокировать ген-оператор.

К ДНК присоединяются РНК-синтезирующие ферменты и начинается транскрипция генов. Синтез белка-фермента прекращается, если субстрат полностью расщепляется, белок-репрессор освобождается и снова блокирует гены-операторы. Это пример регуляции по типу индукции. Также существует регуляция по типу репрессии: когда конечные продукты биохимической реакции, соединяясь с неактивным белком-репрессором, образуют комплекс, блокирующий работу гена-оператора.

  Антитерминация – заключается в том, что происходит игнорирование терминальных кодонов, процесс экспрессии продолжается.

                       Регуляция у эукариот

1)Регуляция генной активности у эукариот намного сложнее, чем у бактерий. У эукариот она происходит не только на уровне клетки. Существуют системы регуляции организма как целого. Огромную роль в регуляции играют гормоны, но регулируют они процессы синтеза белков лишь в клетках-мишенях. Гормоны связываются с белками-рецепторами, расположенными в мембранах таких клеток и включают системы изменения структуры клеточных белков. Те, в свою очередь, могут влиять как на процессы транскрипции, так и процессы трансляции. Каждый гормон через систему посредников активирует свою группу генов. Так адреналин включает синтез ферментов, расщепляющих гликоген мышц до глюкозы, а инсулин влияет на образование гликогена из глюкозы в печени.

2)На стадии транскрипции белки-гистоны участвуют в процессах регуляции генной активности у эукариот. Непременное условие – это деконденсация участка, где происходит транскрипция.

3)Регуляция на уровне трансляции направлена на сохранение стабильности м-РНК, а эффективность трансляции осуществляется с помощью факторов инициации, элонгации, терминации.

 

 

                                                                                                                

                                                                                         Лекция 12.

                                   Изменчивость

План

1.Определение и формы изменчивости: модификационная, комбинативная, мутационная.

2.Мутагенные факторы.

3.Классификация мутаций.

4.Устойчивость и способы репарации генетического материала.

5.Закон гомологических рядов наследственной изменчивости Н.И.Вавилова.

 

               Определение и формы изменчивости

Генетика изучает два основных свойства живых существ - наследственность и изменчивость.

Изменчивость - свойство организмов приобретать новые признаки и особенности индивидуального развития под влиянием факторов среды.

Изменчивость - один из важнейших факторов эволюции, обеспечивающих все многообразие живой природы.

Различают два вида изменчивости:

1. Фенотипическую (ненаследственную, модификационную);

2. Генотипическую (наследственную):

а) комбинативную;

б) мутационную.

Модификационная изменчивость – форма изменчивости, не связанная с изменением генотипа и вызванная влиянием факторов среды.

Модификационная изменчивость имеет особенности:

- не затрагивает наследственную основу организма и поэтому модификации не передаются по наследству, то есть от родителей к потомству,

- изменения направлены, происходят закономерно, их можно предсказать,

- имеют адаптивное (приспособительное) значение,

- имеют массовый (групповой) и обратимый характер,

- определенный фактор внешней среды вызывает сходное изменение у всех особей данного вида.

Модификационная изменчивость имеет предел. Границы изменчивости признака, обусловленные генотипом называются нормой реакции. Она может быть узкой, когда признак изменяется незначительно (цвет глаз), и широкой, когда признак изменяется в широких пределах (рост, масса тела).

В медицине часто приходится устанавливать норму реакции для оценки max и min количественных показателей (уровень гормонов, ферментов, гемоглобина и др.)

Комбинативная изменчивость – это наследственная изменчивость, обусловленная перекомбинацией имеющихся генов и хромосом, без изменения структуры генов и хромосом (наследственного материала). Этот тип изменчивости проявляется уже на стадии образования половых клеток.

Источниками комбинативной изменчивости являются процессы, происходящие в мейозе и в результате оплодотворения:

1. Рекомбинация генов при кроссинговере в профазе1 мейоза.

2. Рекомбинация хромосом в ходе мейоза (независимое расхождение хромосом и хроматид при мейозе)

3. Комбинация хромосом в результате слияния гамет при оплодотворении (случайное сочетание гамет при оплодотворении).

Комбинативная изменчивость обеспечивает генотипическое разнообразие людей, объясняет наличие признаков у детей и внуков от родственников по отцовской и материнской линии.

Мутационная изменчивость – способность генетического (наследственного) материала изменяться и эти изменения наследуются в потомстве.

В основе мутационной изменчивости лежат мутации.

Мутации – это внезапные изменения генетического материала под влиянием среды и передающиеся по наследству.

Частота мутаций зависит от вида организма, от возраста, от фазы онтогенеза, стадии гаметогенеза, может происходить в половых и соматических клетках, иметь рецессивный и доминантный характер. Например, у человека до 6% гамет несут мутантные гены.

Процесс образования мутаций называется мутагенезом.

Факторы, вызывающие мутации называются мутагенными.

Мутации первоначально действуют на генетический материал особи, а через генотип изменяется и фенотип.

 

                      Мутагенные факторы

Факторы, вызывающие мутации называются мутагенными факторами (мутагенами) и подразделяются на:

1. Физические;

2. Химические;

3. Биологические.

К физическим мутагенным факторам относятся различные виды излучений, температура, влажность и др. Наиболее сильное мутагенное действие оказывает ионизирующее излучение – рентгеновские лучи, α-, β-, γ- лучи. Они обладают большой проникающей способностью.

При действии их на организм они вызывают:

а) ионизацию тканей – образование свободных радикалов (ОН) или (Н) из воды, находящейся в тканях. Эти ионы вступают в химическое взаимодействие с ДНК, расщепляют нуклеиновую кислоту и другие органические вещества;

б) ультрафиолетовое излучение характеризуется меньшей энергией, проникает только через поверхностные слои кожи и не вызывает ионизацию тканей, но приводит к образованию димеров (химические связи между двумя пиримидиновыми основаниями одной цепочки, чаще Т-Т). Присутствие димеров в ДНК приводит к ошибкам при ее репликации, нарушает считывание генетической информации;

в) разрыв нитей веретена деления;

г) нарушение структуры генов и хромосом, т.е. образование генных и хромосомных мутаций.

К химическим мутагенам относятся:

- природные органические и неорганические вещества (нитриты, нитраты, алкалоиды, гормоны, ферменты и др.);

- синтетические вещества, ранее не встречавшиеся в природе (пестициды, инсектициды, пищевые консерванты, лекарственные вещества).

- продукты промышленной переработки природных соединений – угля, нефти.

Механизмы их действия:

а) дезаминирование – отщепление аминогруппы от молекулы аминокислот;

б) подавление синтеза нуклеиновых кислот;

в) замена азотистых оснований их аналогами.

Химические мутагены вызывают преимущественно генные мутации и действуют в период репликации ДНК.

К биологическим мутагенам относятся:

- Вирусы (гриппа, краснухи, кори)

- Невирусные паразитические организмы (грибы, бактерии, простейшие, гельминты)

Механизмы их действия:

а) вирусы встраивают свою ДНК в ДНК клеток хозяина.

б) продукты жизнедеятельности паразитов-возбудителей болезней действуют как химические мутагены.

Биологические мутагены вызывают генные и хромосомные мутации.

 

                  Классификация мутаций

Различают следующие основные типы мутаций:

1.По способу возникновения их подразделяют на спонтанные и индуцированные.

Спонтанные– происходят под действием естественных мутагенных факторов внешней среды без вмешательства человека. Они возникают в условиях естественного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности земли.

Индуцированные мутации вызываются искусственно воздействием определенных мутагенных факторов.

2.По мутировавшим клеткам мутации подразделяются на генеративные и соматические.

Генеративные– происходят в половых клетках, передаются по наследству при половом размножении.

Соматические – происходят в соматических клетках и передаются только тем клеткам, которые возникают из этой соматической клетки. Они не передаются по наследству.

3.По влиянию на организм:

Отрицательные мутации – летальные (несовместимые с жизнью); полулетальные (снижающие жизнеспособность организма); нейтральные (не влияющие на процессы жизнедеятельности); положительные (повышающие жизнеспособность). Положительные мутации возникают редко, но имеют большое значение для прогрессивной эволюции.

4.По изменениям генетического материала мутации подразделяются на геномные, хромосомные и генные.

Геномные мутации – это мутации, вызванные изменением числа хромосом. Могут появляться лишние гомологичные хромосомы. В хромосомном наборе на месте двух гомологичных хромосом оказываются три – это трисомия. В случае моносомии наблюдается утрата одной хромосомы из пары. При полиплоидии происходит кратное гаплоидному увеличение числа хромосом. Еще один вариант геномной мутации – гаплоидия, при которой остается только одна хромосома из каждой пары.

Хромосомныемутации связаны с нарушением структуры хромосом. К таким мутациям относятся утраты участков хромосом (делеции), добавление участков (дупликация) и поворот участка хромосом на 180° (инверсия).

Генныемутации, при которых изменения происходят на уровне отдельных генов, т.е. участков молекулы ДНК. Это может быть утрата нуклеотидов, замена одного основания на другое, перестановка нуклеотидов или добавление новых.

 

           Устойчивость и репарация генетического материала

 

Устойчивость к изменениям генетического материала обеспечивается:

1. Диплоидным набором хромосом.

2. Двойной спиралью ДНК.

3. Вырожденностью (избыточностью) генетического кода

4. Повтором некоторых генов.

5. Репарацией нарушений структуры ДНК

Наличие механизмов репарации – обязательное условие существования биологических существ.

Репарация генетического материала это процесс, обеспечивающий восстановление поврежденной структуры молекулы ДНК.

В ДНК клетки ежедневно происходит множество случайных изменений.

Большинство эффективно исправляются (репарируются) с помощью специальных ферментных систем.

Впервые репарация молекулы ДНК была установлена в 1948 году. А в 1962 году был описан один из способов репарации – световая репарация или фотореактивация.

Было установлено, что при ультрафиолетовом облучении вирусов-фагов, бактерий и простейших наблюдается резкое снижение их жизнедеятельности, даже гибель.

Если воздействовать на них видимым светом, то выживаемость их значительно увеличивается.

Оказалось, что под действием ультрафиолета в молекуле ДНК образуются димеры (химические связи между двумя основаниями одной цепочки, чаще Т-Т), образование димеров препятствует считыванию информации.

Видимый свет активирует ферменты, разрушающие димеры.

Второй способ репарации – темновая репарация, была изучена в 50-е годы ХХ века.

Темновая репарацияпротекает в четыре стадии с участием четырех групп ферментов. Ферменты образовались в ходе эволюции и направлены на поддержание стабильности генетической информации клетки.

1. Фермент эндонуклеаза находит поврежденный участок и рядом с ним разрывает нить ДНК.

2. Фермент эктонуклеаза «вырезает» (удаляет) поврежденный участок.

3. ДНК-полимераза по принципу комплементарности синтезирует фрагмент ДНК на месте разрушенного.

4. Лигаза «сшивает» синтезированный фрагмент с основной нитью ДНК.

Доказана возможность репарации ДНК при повреждении обеих ее нитей. При этом информация может быть получена с и-РНК (фермент ревертаза).

 










Последнее изменение этой страницы: 2018-06-01; просмотров: 234.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...