Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обнаружение геминана с помощью реакции Тейхмана




Стеклянной палочкой нанесем на предметное стекло капельку крови, размажем ее и высушим на воздухе. Затем нанесем на это стекло, тонким слоем измельченную до мельчайшего порошка поваренную соль, добавим 1—2 капли ледяной уксусной кислоты (в крайнем случае можно взять вместо нее уксусную кислоту высокой концентрации) и наложим сверху покровное стекло. Нагреем предметное стекло слабым (!) пламенем до образования первых пузырьков (ледяная уксусная кислота кипит при 118,1 °С). Затем при осторожном нагревании полностью выпарим уксусную кислоту. После охлаждения рассмотрим пробу под микроскопом с увеличением в 300 раз. Мы увидим красно-коричневые ромбические таблички (призмы). Если такие кристаллы не образовались, то снова нанесем уксусную кислоту на границу соприкосновения стекол, дадим ей просочиться внутрь и снова нагреем предметное стекло.

Эта реакция позволяет обнаружить следы высохшей крови и на ткани. Для этого обработаем такое пятно водой, содержащей углекислый газ, например минеральной водой, профильтруем вытяжку, фильтрат упарим на предметном стекле и далее обработаем пробу так же, как указано выше. Впервые синтезировать и расщепить гемин удалось немецкому химику Гансу Фишеру в 1928 г. Сравнение формулы гемина (или гема) с формулой зеленого пигмента растений хлорофилла свидетельствует об удивительном сходстве этих соединений:

 

Обнаружение крови с использованием бензидина

Бензидиновая проба тоже позволяет обнаружить незначительное количество крови. Вначале приготовим реактив. Для этого 0,5 г бензидина растворим в 10 мл концентрированной уксусной кислоты и разбавим раствор водой до 100 мл. К 1 мл полученного раствора прильем 3 мл 3 %-ного раствора пероксида (перекиси) водорода и тотчас смешаем с очень разбавленной водной вытяжкой крови. Мы увидим зеленое окрашивание, которое быстро переходит в синее.

В 5 л крови, содержащейся в организме человека, находится 25 биллионов красных кровяных телец, а в них — от 600 до 800 г гемоглобина. К 1 г чистого гемоглобина может присоединиться около 1,3 мл кислорода. Однако к гемоглобину может присоединяться не только кислород. Его сродство к оксиду углерода (угарному газу) в 425 раз больше, чем к кислороду. Образование более прочного соединения оксида углерода с гемоглобином приводит к тому, что кровь теряет способность переносить кислород, и отравленный человек задыхается. Поэтому будем осторожны с бытовым газом и другими газами, содержащими оксид углерода!

Теперь мы знаем, что при обмене веществ кровь играет важнейшую роль транспортного средства. Перенос газов, удаление чужеродных веществ, заживление ран, транспортировка питательных веществ, продуктов обмена, ферментов и гормонов являются главными функциями крови. Вся пища, которую человек съедает, подвергается в желудке и кишечнике химической переработке. Эти превращения осуществляются под действием особых пищеварительных соков — слюны, желудочного сока, желчи, поджелудочного и кишечного сока. Активным началом пищеварительных соков являются, главным образом, биологические катализаторы — так называемые ферменты, или энзимы. Например, ферменты пепсин, трипсин и эрепсин, а также сычужный фермент химозин, действуя на белки, расщепляют их на простейшие фрагменты — аминокислоты, из которых организм может строить свои собственные белки. Ферменты амилаза, мальтаза, лактаза и целлюлоза участвуют в расщеплении углеводов, тогда как желчь и ферменты группы липаз способствуют перевариванию жиров.

 

Действие желчи

Влияние желчи на переваривание жиров можно подтвердить следующим опытом. В две одинаковые склянки или колбы Эрленмейера вставим стеклянные воронки. В каждой из воронок слегка увлажним полоску фильтровальной бумаги водой. Затем в одной из воронок пропитаем бумагу желчью (коровьей, свиной или гусиной) и в обе воронки нальем по несколько миллилитров пищевого растительного масла. Мы увидим, что масло проникает только в ту полоску бумаги, которая была обработана желчью. Дело в том, что желчные кислоты вызывают эмульгирование жиров, дробление их на мельчайшие частицы. Поэтому желчь помогает в организме ферментам, способствующим перевариванию жиров. Особенно наглядно это проявляется в следующем опыте.

 

«Искусственный желудок»

Если удастся найти свиной желудок, его нужно вывернуть, промыть водой и тупым ножом соскоблить слизистую оболочку в химический стакан. Туда же нальем четырехкратное количество 5 %-ного этанола и оставим стакан на 2 дня. Полученную водно-спиртовую вытяжку профильтруем через кусок ткани. Фильтрование можно существенно ускорить с помощью отсасывания на нутч-фильтре водоструйным насосом. Вместо приготовления такой вытяжки можно купить в аптеке пепсин в порошке и растворить его в 250 мл воды.

В заключение натрем на терке белок куриного яйца, сваренного вкрутую (кипятить 10 минут), и смешаем его в химическом стакане со 100 мл воды, 0,5 мл концентрированной соляной кислоты и приготовленной вытяжкой, содержащей пепсин, или же с 50 мл раствора продажного пепсина. Соляную кислоту нужно добавить потому, что пепсин действует только в кислой среде — при рН от 1,4 до 2. Величина рН желудочного сока благодаря присутствию в нем соляной кислоты находится в пределах от 0,9 до 1,5.

Стакан выдержим несколько часов при температуре приблизительно 40 °С в теплом месте — дома около плиты иди печи либо в лаборатории в сушильном шкафу. В течение первой четверти каждого часа содержимое стакана будем перемешивать стеклянной палочкой. Уже через 2 часа мы заметим, что количество белка существенно уменьшилось. Через 6—8 часов весь белок растворится и образуется малое количество белой со слабым желтоватым оттенком кожицы. При этом яичный белок, имеющий сложное строение, гидролизуется водой и превращается в смесь соединений более простого строения — яичный пептон. То, чего химик может добиться только с помощью концентрированных кислот, нам в нашем искусственном желудке удалось осуществить при исключительно мягких условиях.

Неприятный кислый запах содержимого стакана близок к запаху неполностью переваренной пищи.

Теперь проведем самостоятельно еще несколько пробирочных опытов, связанных с исследованием переваривания пищи. Некоторые из них заслуживают краткого пояснения.

Расщепление крахмала можно провести в пробирке при действии слюны на жидкий крахмальный клейстер (37 °С, 30 минут —1 час). Образующийся сахар обнаруживается с помощью реактива Фелинга. Тот же результат можно получить при нагревании 10 мл крахмального клейстера с 5 мл вытяжки коровьей поджелудочной железы в течение 15 минут на водяной бане при 40 0С. Вытяжку готовят путем растирания поджелудочной железы с малым количеством пропантриола (глицерина).

Такая кашица из поджелудочной железы пригодится и для исследования переваривания жиров. С этой целью в пробирку, наполовину заполненную цельным молоком, добавим 0,5%-ный раствор соды (карбоната натрия) до появления красного окрашивания с фенолфталеином. Если теперь добавить кашицу из поджелудочной железы и нагреть на водяной бане до 40 °С, то красное окрашивание снова исчезнет. При этом из жира натурального молока образуются свободные жирные кислоты. В заключение, используя сычужный фермент (сычужную закваску) или полоску очищенной слизистой оболочки телячьего желудка, мы можем выделить из сырого молока белок казеин. Химики и биологи открыли сотни интересных реакций, позволяющих обнаружить самые разнообразные вещества, содержащиеся в организме. С некоторыми из этих реакций мы познакомимся.

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 279.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...