Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Термоядерная энергия (часть 2)




Работы над управляемой термоядерной реакцией синтеза начались еще в 50-х годах прошлого века, и на сегодняшний день практически вплотную подошли к созданию энергетически выгодного и надежного термоядерного реактора, производящего, а не потребляющего энергию. Первый термоядерный реактор выглядел как закрытая трубка с электродами в торцах, из которой был тщательно откачан весь воздух.

    В нее вводили разреженный газ и через газ пропускали сильный электрический разряд. В газе возникало нечто похожее на молнию — разрядный шнур плазмы. Вокруг шнура, как вокруг любого тока, появляется магнитное поле, силовые линии кото-рого можно изобразить в виде колечек, охватывающих шнур. По мере нарастания тока это поле усиливается, колечки силовых линий сжимаются, стискивая шнур плазмы. В результате плазменные частицы несутся к оси шнура, и там возникает невообразимая толчея заряженных частиц. Это ведет к резкому повышению температуры.

    В подобных опытах температуру плазмы удалось поднять примерно до 2 млн. градусов. Так был достигнут новый рекорд наивысшей лабораторной температуры. Но и этого было мало для термоядерной реакции. К тому же разряды получались практически мгновенными, похожими на взрывы, а шнуры плазмы — неустойчивыми, да и не очень хорошо они были изолированы от стенок трубки: концы шнура непосредственно касались электродов, и те отсасывали тепло.

    Тогда родилась другая мысль: приготовить не горячую, а холодную плазму, собрать ее в быструю струю и впрыснуть в магнитное поле особой конфигурации, в так называемую магнитную бутылку. Там струя плазмы должна задержаться, частицы ее — запутаться, закружиться. Из прямого, упорядоченного движения частиц создастся хаос, беспорядок, а это-то и требуется, чтобы повысить температуру. Холодная плазма, кстати говоря, знакома всем: это она светится в трубках неоновых рек-лам, работает в газоразрядных и люминесцентных лампах.

    Холодную плазму можно в электрическом поле ускорить, собрать в достаточно быструю струю. Сложнее создать магнитную ловушку. Вот в общих чертах принцип ее устройства. Его основа — цилиндрический соленоид, витки которого наложены неравномерно: по-середине цилиндра — реже, у концов — гуще. Когда по катушке течет ток, внутри нее возникает магнитное поле, как в любом электромагните. Из-за неравномерности витков магнитное поле в катушке также неравномерно: у концов оно сильнее, чем на середине. Силовые линии идут подобно волокнам луковицы: сначала густо, потом реже, потом опять густо.

    Магнитное поле такой формы и есть простейшая магнитная бутылка. Усиленные краевые области этого поля называются зеркалами или пробками. Электрически заряженные частицы, попавшие в бутылку, могут задержаться в ней, словно рыба в сети. Ведь магнитное поле всегда отклоняет движущийся заряд — искривляет его траекторию. Если поле достаточно сильно, заряженная частица будет, не вылетая из бутылки, двигаться по спирали, как бы наматывая свой путь на силовую линию поля.

    А вблизи пробки, где силовые линии сгущены, частица не может пробиться сквозь их чащу (для этого ей нужна была бы дополнительная энергия) и поворачивает обратно; пролетев по спирали к противоположной пробке, частица опять будет отражена и снова направится внутрь бутылки и т. д. Предполагалось, что так можно уловить плазму.

    К сожалению, поведение плазмы в магнитной бутылке оказалось значительно сложнее предположенного. Первые же эксперименты показали, что плазма ловится в магнитную ловушку, увы, очень неохотно.

    Физически магнитная бутылка, или пробкотрон выглядит так. На прочном высоком фундаменте лежит камера — широкий цилиндр, охваченный крепежными поясами и облицованный текстолитовыми блоками. С обоих торцов цилиндр закрыт, к нему подведены трубы вакуумных насосов. А вокруг цилиндра проложены трубчатые витки обмотки, в них течет охлаждающая вода. Внутри камеры размещены датчики приборов, от них идет множество проводов к пульту управления. К одному из торцов камеры присоединен инжектор плазмы: из него в камеру, где заранее подготовлен вакуум, впрыскивается плазменная струя.

    Электрическое питание установки столь обильно, что ее обслуживает специальный энергетический сектор — с трансформаторами, выпрямителями, конденсаторными батареями.

    Идет эксперимент. Огромной силы электрические импульсы обрушиваются в обмотку — токи в сотни тысяч ампер. Одновременно электронное автоматическое устройство впрыскивает в камеру струю водородной плазмы.

    Годы кропотливой работы потратили ученые на опыты в пробкотронах. Изучали особенности плазмы, ее капризы, которые на первых порах выглядели непреодолимыми, не поддающимися никакому укрощению. Эфемерное облачко плазмы было неустойчивым и существовало миллионные доли секунды. Плазма не держалась в ловушке, касалась стенок камеры и неминуемо гибла.

    И все-таки опыт накапливался. Наряду с бесчисленными наблюдениями велись теоретические исследования. Предлагались новые режимы воздействия на плазму, новые структуры обмоток и магнитных полей в ловушке. И мало-помалу упорство ученых начало побеждать.

    В 1962 г. в Институте атомной энергии пробкотрон снабдили дополнительной продольной стабилизирующей обмоткой, и водородную плазму удалось нагреть до сверхзвездной температуры —40—50 млн. градусов. Особенно ценно то, что такая горячая плазма была задержана в ловушке на тысячные, даже на сотые доли секунды. Жизнь плазмы удлинили таким образом в сотни тысяч раз, вплотную подойдя к получению энергии термоядерного синтеза. Правда, плотность нагретой плазмы была сравнительно небольшой — 1010 частиц на 1 см3.

    Затем последовали новые успехи. Стремясь постичь тонкие свойства плазмы, физики далеко продвинули теоретические исследования этого своеобразного состояния вещества.

    На службу удалось поставить так называемые коллективные взаимодействия в плазме, т.е. взаимные влияния ее сгущений, комков, неоднородностей, в тот короткий период, когда в ней еще не произошли парные столкновения частиц.

    В Институте атомной энергии правели, например, такой эксперимент. В магнитную ловушку впрыснули встречные потоки холодной плазмы. В момент, когда они пронзили друг друга, на них обрушили мощный и очень короткий удар магнитного поля. Непосредственно на ядра этот удар почти не подействовал: они слишком массивны. Зато в электронных потоках тотчас нарушилась однородность, возникли вихри, «толпы» частичек. От электронов это групповое хаотическое движение тут же передалось ядрам, и их температура подскочила до десятков миллионов градусов.

    Так, в сравнительно небольшой лабораторной установке плазму удалось нагреть обходным путем, используя коллективные взаимодействия. При этом с пользой применили ту самую склонность к неустойчивости, которая в других аппаратах обычно разрушала плазменное облачко.

    Иначе поступили ученые Института ядерной физики Сибирского отделения Академии наук в Новосибирске. На плазму, пойманную пробкотроном, они обрушили такой сильный и резкий удар магнитного поля, что в плазме произошло опрокидывание ударной волны. Получилось нечто похожее на морской бурун. Примерно так же опрокидываются крутые водяные волны, образуя пенистые гребни — барашки, в которых частицы беспорядочно мечутся в разные стороны. В результате опрокидывания ударной волны температура ядер в плазме тяжелого водорода (плотностью 1013 частиц на 1 см3) поднялась до рекордной величины — 100 млн. градусов. На десятки микросекунд в установке зажглась физическая термоядерная реакция синтеза. Она заявила о себе ней-тронами, освободившимися при «звездном» синтезе ядер легкого гелия. В физической лаборатории на мгновение вспыхнула искра искусственного солнца!

    Однако, не смотря на то, что уже несколько десятилетий ученые разных стран зажигают в реакторах маленькие «солнца», лабораторные реакции не дают пока ни джоуля энергии, наоборот, они ее довольно жадно поглощают. Чтобы возбудить энергетически выгодный термоядерный процесс (с положительным выделением энергии), ядра в плазме тяжелого водорода (плотностью 1014—1015 частиц на 1 см3) нужно экономно нагреть до 500 миллионов и даже до миллиарда градусов и удержать в течение секунды. Эти требования варьируются: при большей плотности плазмы ее температура и время удержания могут быть уменьшены. Однако невозможно достичь цели, если, скажем, заботиться только о повышении температуры. Задача должна быть решена комплексно.

    Даже при исполнении всех этих требований, остаются еще и другие технические трудности. Нужно создавать гигантские (в сотни тысяч эрстед) магнитные поля, высокий вакуум в достаточном объеме (ведь термоядерное горючее в сотни миллионов раз разреженнее комнатного воздуха), получать жаропрочные, но не загрязняющие вакуум материалы для внутренних частей камер и т. п. Таким образом, энергетически выгодный реактор термоядерного синтеза – это результат работы на стыке множества наук и направлений научной мысли.

    Исследования проводились не только в пробкотронах. Были поставлены опыты в так называемых тороидальных камерах. Там плазма находится в кольцевой трубе, вроде полого бублика, и представляет собой как бы замкнутый виток мощного понижающего трансформатора. Раскаляется она мощным импульсом электрического тока.

    Есть камеры, где плазма, схваченная в магнитную ловушку, резко сжимается нарастающим магнитным полем; тогда она нагревается по тому же закону, по которому греется воздух под поршнем велосипедного насоса. Есть камеры и в форме восьмерки и другие сложные конструкции. Они тоже дают надежду получить устойчивую горячую плазму.

    Несмотря на огромные трудности (и принципиальные и технические), физики и инженеры уверенно продвигаются по пути к искусственному солнцу.

    Промышленный, управляемый термоядерный реактор будет самой замечательной энергетической установкой из всех изобретенных человеком. Научившись «сжигать воду» в искусственном солнце, мы получим источник топлива, равноценный 500 океанам, в которых вместо воды была бы нефть! Трудно даже вообразить себе, к какому бурному прогрессу приведет это индустрию, сельское хозяйство, науку. Получив изобилие термоядерной энергии, человек сможет осуществить самые дерзкие мечты, вплоть до кардинального преобразования Земли, ее природы, ее климата. Всюду, где потребуется, люди пошлют воду в пустыни, согреют холодные моря, осушат болота, обнажат запасы полезных ископаемых.

    Сказочное энергетическое богатство откроет новую эру в истории, эру невиданного изобилия и поистине фантастического умножения человеческого могущества.

Химическая энергия.

    Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности.

    Она известна Человечеству с самых давних времен и всегда применялась как в быту, так и на производстве. Наиболее распространенными устройствами, использующими химическую энергию являются: камин, печь, горн, домна, факел, газовая горелка, пуля, снаряд, ракета, самолет, автомобиль. Химическая энергия применяется в производстве медикаментов, пластика, синтетических материалов, и т.п.

    Наиболее применяемыми источниками химической энергии являются: нефтяные месторождения (нефть и ее производные), газоконденсатные месторождения (природный газ), угольные бассейны (каменный уголь), болота (торф), леса (древесина), а также поля (зеленые растения), луга (солома), моря (водоросли), и т.п.

    Химические источники энергии являются «традиционными», однако их использование оказывает влияние на климат планеты. При нормальном функционировании экосистемы, солнечная световая энергия преобразуется в форму химической, и хранится в ней на протяжении продолжительного времени. Использование этих природных запасов, да и вообще нарушение энергетического баланса планеты приводит к непредсказуемым последствиям.

    Человек не использует химическую энергию непосредственно (разве что к такому использованию можно отнести некоторые химические реакции).

    Обычно химическая энергия, выделившаяся в результате разрыва высокоэнергетических и образования низкоэнергетических химических связей, выделяется в окружающую среду в виде тепловой энергии. Химическую энергию можно назвать наиболее распространенной и широко используемой с древности и до наших дней. Любой процесс, связанный с горением, имеет в своей основе энергию химического взаимодействия органического (реже минерального) вещества и кислорода.

    Современное промышленное высокотехнологичное «горение» осуществляется в двигателях внутреннего сгорания и газовых турбинах, в плазменных генераторах и топливных элементах. Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – тепловую энергию. К великому сожалению ученых и инженеров, к.п.д. тепловых машин довольно мал – не более 40%. Ограничения на дальнейший рост кпд наложены не материалами, а самой природой. 40% - это предельный кпд тепловой машины и дальше его увеличить невозможно.

    Топливный элемент производит непосредственное преобразование энергии химических связей в электрическую энергию. В некотором роде то же самое делает и плазменный генератор. Однако, и в том и в другом случае, часть энергии все равно теряется в виде выделяющегося тепла и рассеивается. Возможности решения проблемы рассеяния тепла пока не существует, что снижает кпд любой самой хорошей преобразующей установки.

    Химические взаимодействия лежат в основе механической энергии движения тел людей и животных. Человек питается растениями и животными, получая из них энергию химических связей, которая сформировалась благодаря фотосинтезу. Таким образом, первоисточником для химической энергии является лучистая солнечная энергия, или, фактически, энергия ядерного синтеза от процессов, происходящих на Солнце. Как и всё живое на Земле, в конечном счете, человек питается энергией Солнца.

Приведу некоторые примеры цепочек преобразования химической энергии.

    При сгорании порох превращается в горячие газы, которые в свою очередь сообщают пуле кинетическую энергию. Пуля в этом случае набирает упорядоченную кинетическую энергию за счет теплоты горячих газов (их «неорганизованной» кинетической энергии). Откуда же берут тепловую энергию сами молекулы? До этого взрыва порох был холодным твердым телом, содержащим запас «химической энергии». Он содержал в себе энергию первичного топлива — угля, дров, нефти. А это - молекулярная энергия, запасенная, если угодно, в силовых полях атомов. Представьте, что химическое соединение состоит из атомов, которые вопреки отталкивающим пружинящим межатомным силам посажены на свои места в молекуле и «защелка закрыта». Потенциальная энергия при этом запасается в «сжатых пружинах». Разумеется, химическая энергия — гораздо более сложная вещь, чем такая модель, но общая картина ясна: атомы и молекулы запасают энергию, которая высвобождается при одних химических изменениях и запасается при других. Большая часть горючих веществ высвобождает свою энергию при горении в кислороде, так что энергия их связана с силовыми полями молекул топлива и кислорода. Трудно указать, где она расположена, но количество ее достаточно определенно, поскольку при переходе энергии в другие формы мы можем измерять работу, т. е. получить произведение сила на расстояние, например, столько-то джоулей на каждый килограмм полностью сгоревшего топлива. Химическую энергию пороха или заряда фейерверочной ракеты локализовать легче. Вся она сидит там, внутри молекул горючего.

    Пища — источник химической энергии. Пища — это топливо для людей и животных, она снабжает их химической энергией, которая переносится потоком крови к нуждающимся в ней мышцам. Мышцы могут преобразовывать часть получаемой энергии в механическую, поднимая грузы и делая другую полезную работу. Пища содержит в основном атомы углерода, кислорода и водорода. Рассмотрим, к примеру, молекулу простейшего сахара, глюкозы C6H12O6, поддерживающей работу мышц.

    В процессе работы мышц и их отдыха, молекулы этого топлива расщепляются пополам, затем отщепляется шесть молекул H2O, а атомы углерода, соединяясь с атомами кислорода, поступающего из легких, дают шесть молекул CO2. Это вкратце сильно упрощенная картина химии жизни. Основные компоненты пищи — крахмал, сахара, жиры и белки — представляют большие молекулы, которые построены из меньших молекулярных структур, состоящих из атомов.

    Эти небольшие комплексы синтезируются растениями, связываются ими каким-то способом, образуя растительные вещества, такие, как углеводы и целлюлоза. Животные, поедая растительную или животную пищу, расщепляют эти вещества и перераспределяют их составляющие так, чтобы образовывались нужные большие молекулы. Однако сами животные не синтезируют их частей. Энергию, необходимую для движения и другой деятельности, они получают при дальнейшем расщеплении некоторых молекулярных комплексов на углекислый газ и воду. Эта энергия первоначально была «усвоена» растениями из солнечного света и запасена при синтезе таких комплексов в виде энергии химических связей. Связывание и расщепление этих малых комплексов в пищеварительной системе животного — обычно дело нехитрое и не требует больших затрат энергии, оно быстро совершается микробами или ферментами. Большие молекулы в нашей пище содержатся в углеводах к целлюлозе, которые составлены из множества групп простых молекул сахара наподобие глюкозы, жиров с длинными цепями CH2 и белков — еще больших по величине и очень сложных молекул, необходимых для строительства и обновления тканей. Процесс, посредством которого химическая энергия превращается в теплоту тела или работу мышц, — в сущности, то же горение. При сгорании топлива в пламени происходит соединение его с кислородом с образованием воды и углекислого газа. Простейшее топливо нашего тела, такое, как глюкоза, соединяясь с кислородом, поступающим из легких, также образует воду и углекислый газ, но процесс идет гораздо медленнее и более хитрым путем, нежели простое горение в пламени; температура невелика, а выделение энергии - то же самое. Растения поглощают воду и CO2 из воздуха, соединяют их и создают сахар крахмал и целлюлозу — главные источники энергии животных.

    Добывание животными химической энергии для мышц происходит примерно так: из пищи извлекаются простейшие молекулы сахара (точно так же, как и на химическом заводе извлекается спирт из древесной массы), которые запасаются в скоплениях, представляющих собой молекулы нерастворимого «животного» крахмала. Этот запас молекул крахмала расщепляется по мере надобности, поддерживает снабжение мышц сахаром. Когда мышцы сокращаются и производят работу, сахар в две стадии превращается в воду и углекислый газ. Из своей растительной пищи животные еще запасают жиры и «сжигают» их для согревания тела.

    Затем все то, что растрачивается человеком и животными, вновь воссоздается растениями, и опять все готово к употреблению. Как же растения делают это? Мы не можем «обратить» действие пламени и «возродить» сгоревшие вещества. Как же растения ухитряются проделывать такой «синтез жизни», сжимая пружинки межмолекулярных сил и закрывая защелки? Поскольку «открывание защелки» приводит к выделению химической энергии, растения должны вкладывать ее при создании агрегата. Им необходимо как снабжение энергией, так и устройство, которое использовало бы ее для синтеза молекул H2O и CO2 в молекулы сахара и крахмала. Солнечный свет снабжает их энергией — порциями световых волн, так сказать, в «расфасованном по пакетикам» виде, а все операции производятся такими «умными» молекулами растения, как зеленый хлорофилл. На солнечном свету зеленый лист растения поглощает CO2 и создает крахмал. Таким образом, растительная и животная жизнь образует цикл, который начинается с воды, углекислого газа и солнечного света и заканчивается водой, углекислотой, теплом и механической энергией животных. Все наши машины, работающие на угле, нефти, ветре, падающей воде, все животные, потребляющие пищу, в конечном итоге получают свое топливо от Солнца.

Электрическая энергия.

 

Электрическая энергия широко известна человеку из повседневной жизни.

    Это энергия, заключенная в электромагнитном поле. В рамках Электродинамики (Раздела Физики), электромагнитная энергия включает в себя и такие виды энергии, как электрическая и магнитная.

    Электромагнитная энергия известна и используется людьми издревле. Известны посеребренные и позолоченные древнеегипетские изделия, покрытие которых выполнено электрохимическим методом. Вполне вероятно использование древними народами аналога Вольтова столба – первого гальванического элемента, в котором электрический ток получается благодаря химической реакции в столбе из колец меди, цинка и ткани, пропитанной кислотой. Также широко известен с древности эффект накопления электрического заряда при трении янтаря о шерсть.

    Человечество издавна знакомо с естественными источниками электромагнитной энергии, такими как: молнии, космические электромагнитные волны, магнитное поле Земли, некоторые виды рыб. Однако Человек пока не умеет эффективно использовать естественные источники электрической энергии в своих целях. Исключение, пожалуй, составляет только компас, использующий линии магнитного поля Земли, а также полупроводниковые преобразователи электромагнитных волн. Поэтому эта энергия обычно получается из других видов энергии путем использования устройств - преобразователей. Сегодня для производства электрической энергии применяют: гальванические элементы (химическая энергия), генераторы электрической энергии (механическая, химическая, ядерная энергия), солнечные батареи (световая энергия), топливные элементы (химическая энергия).

    Электрический ток, как явление переноса электромагнитной энергии, широко применяется в современной цивилизации для передачи энергии на расстояния. Эта передача осуществляется в рамках единой энергосистемы, поскольку, хотя выработка электрической энергии относительно стабильна по объемам, поставляемым в сеть, потребность в ней серьезно колеблется в зависимости от области страны и времени.

    Использование свойств электрического тока, электрических и электромагнитных полей лежит в основе большей части современных технологий. Именно поэтому большинство преобразований энергии, получаемой человеком из различных источников, сводится к получению «универсальной» электрической энергии.

    Но электрической энергия не используется нами сама по себе – она является «передаточным звеном», неким универсальным стандартом. Потребление электрической энергии осуществляется для ее преобразования в световую, механическую, химическую, и тепловую энергию. Использование электрической энергии удобно в связи с ее универсальностью и простотой использования, а также с возможностью ее передачи на большие расстояния.

    Однако до сих пор не существует эффективных методов хранения больших запасов электрической энергии. В связи с этим использование электрической энергии, к примеру, в автомобилях, оказывается значительно менее выгодным, чем применение химической энергии углеводородного топлива.

    В нашей стране принят стандарт качества электрической энергии, описываемый в ГОСТ 13109. Он регулирует такие параметры электрического тока, как отклонение напряжения от нормы, размах напряжения, коэффициент искажения синусоидальности напряжения и т.п. Для контроля качества электрической энергии применяют специальные приборы - анализаторы качества электрической энергии.

 

 










Последнее изменение этой страницы: 2018-06-01; просмотров: 225.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...