Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ




Энерговооруженность общества – основа его научно-технического прогресса. Её соответствие общественным потребностям – важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Однако, человечеству в последнее время постоянно не хватает энергии.

Сейчас в мире производится около 60 тыс. миллиардов кВт. час. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм. Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются, в принципе, тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике.

Различные виды НВИЭ находятся на различных стадиях освоения. Наибольшее применение получил самый изменчивый и непостоянный вид энергии – ветер. Во многих странах возникла новая отрасль – ветроэнергетическое машиностроение. Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

Обнаружили ряд отрицательных явлений. Например, распространение ветрогенераторов может затруднить прием телепередач и создавать мощные звуковые колебания. После доработки лопастей от инфразвуковых колебаний удалось избавиться.

Проблема утилизации экологически чистой и притом «дармовой» солнечной энергии волнует человечество с незапамятных времен, но только недавно успехи в этом направлении позволили начать формировать реальный, развивающийся рынок солнечной энергетики. К настоящему времени основными способами прямой утилизации солнечной энергии являются преобразование ее в электрическую и тепловую. Устройства, преобразующие солнечную энергию в электрическую, называются фотоэлектрическими или фотовольтаическими, а приборы, преобразующие солнечную энергию в тепловую, - термическими. В последнее время все большее распространение получают так называемые гибридные или как их еще называют комбинированные системы, сочетающие в себе функции фотовольтаических и термических устройств. Отличительной особенностью гибридных систем является возможность их функционирования в автономном режиме, без подключения к централизованным энергосистемам. В литературе все три типа приборов называются гелиосистемами. Сейчас, суммарная мировая мощность автономных фотоэлектрических установок достигла 500 МВт.

Рис. 7.1. Схема работы ветрогенератора

 

Существует два основных направления в развитии солнечной энергетики: решение глобального вопроса снабжения энергией и создание солнечных преобразователей, рассчитанных на выполнение конкретных локальных задач. Эти преобразователи, в свою очередь, также делятся на две группы: высокотемпературные и низкотемпературные.

В преобразователях первого типа солнечные лучи концентрируются на небольшом участке, температура которого поднимется до 3000°С. Такие установки используются, например, для плавки металлов

Самая многочисленная часть солнечных преобразователей работает при гораздо меньших температурах – порядка 100-200°С. С их помощью подогревают воду, обессоливают ее, поднимают из колодцев.

Солнечные установки практически не требуют эксплуатационных расходов, не нуждаются в ремонте и требуют затрат лишь на их сооружение и поддержание в чистоте. Работать они могут бесконечно.

Большое внимание приобрела «океанотермическая энергоконверсия», т.е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей как пропан, фреон или аммоний.


1 — поплавковый клапан аванкамеры; 2 — дренажная труба накопителя; 3 — трубопровод для подвода холодной воды к аванкамере; 4 — теплоизоляционный короб накопителя; 5 — труба ввода холодной воды; 6 — труба подвода холодной воды к смесителям; 7 — труба подвода горячей воды к смесителям; 8 — труба для подвода горячей воды к накопителю; 9 — солнечные коллекторы; 10 — сливной вентиль; 11 — вентиль для залива системы; 12 — «горячая» труба солнечного коллектора; 13 — труба подпитки накопителя; 14 — аванкамера; 15 — дренажная труба аванкамеры.


Рис. 7.2. Солнечный водонагреватель

Принцип действия этих станций заключается в следующем: теплую морскую воду (24-32оС) направляют в теплообменник, где жидкий аммиак или фреон превращаются в пар, который вращает турбину, а затем поступает в следующий теплообменник для охлаждения и конденсации водой с температурой 5-6оС, поступающей с глубины 200-500 метров. Получаемую электроэнергию передают на берег по подводному кабелю, но ее можно использовать и на месте (для обеспечения добычи минерального сырья со дна или его выделения из морской воды). Достоинство подобных установок – возможность их доставки в любой район Мирового океана. К тому же, разность температур различных слоев океанической воды – более стабильный источник энергии, чем, скажем, ветер, Солнце, морские волны или прибой. Недостаток таких станций – их географическая привязанность к тропическим широтам.

Конечно, доступ к запасам электроэнергии океана предоставляет великолепные возможности, но (по крайней мере, пока) электричество не поднимает в небо самолеты, не будет двигать легковые и грузовые автомобили и автобусы, не поведет корабли через моря. Однако самолеты и легковые автомобили, автобусы и грузовики могут приводиться в движение газом, который можно извлекать из воды. Этот газ - водород, и он может использоваться в качестве горючего.

Рис. 7.3. Схема солнечного теплоснабжения

1 - солнечные лучи; 2 - солнечный вакуумный коллектор; З - датчик температуры № 1; 4 - расширительный бак; 5 - рабочая станция; 6 - контроллер; 7 - электронагреватель; 8- датчик температуры № 2; 9 - запорный клапан; 10 - входное отверстие (холодная вода); 11- выходное отверстие (горячая вода); 12 - накопительный резервуар с одним/двумя медными теплообменниками.

 

Водород - один из наиболее распространенных элементов во Вселенной. В океане он содержится в каждой капле воды. Извлеченный из воды водород можно сжигать как топливо и использовать не только для того, чтобы приводить в движение различные транспортные средства, но и для получения электроэнергии. Полученный водород достаточно удобно хранить: в виде сжатого газа в танкерах или в сжиженном виде в криогенных контейнерах. Его можно хранить и в твердом виде после соединения с железо-титановым сплавом или с магнием для образования металлических гидридов. После этого их можно легко транспортировать и использовать по мере необходимости.

Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества.

Одно из наиболее перспективных направлений энергетического использования биомассы – производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность – 5-6 тыс. ккал/м3 .

Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 м3 метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. м3 метана. В хлопкосеющих районах ежегодно остается 8 - 9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. м3 метана. Для тех же целей возможна утилизация ботвы культурных растений, трав и др.

Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина. Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую.

Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья.

Рис. 7.4. Схема биогазовой установки с ручной загрузкой, перемешиванием и подогревом сырья в реакторе

1 - водогрейный котел; 2 - бункер загрузки; 3 – перемешивающее устройство; 4 - реактор; 5 - водяной затвор; 6 - отвод биогаза; 7 - выгрузочный бункер; 8 - емкость для хранения биоудобрений; 9 - выгрузочная труба.

 

Из приведенных материалов видно, что использовать нетрадиционные и возобновляемые источники энергии целиком возможно. Пока что зтому препятствует их високая стоимость сравнительно с известными установками. Но при уменьшении ресурсов топлива и возрастании стоимости электроэнергии перспектива применения нетрадиционных систем улучшается. Опыт зксплуатации ветрогенераторов уже подтвердил, что для отдельных регионов такие установки уже сейчас являются конкурентоспособными.

Осуществив мероприятия по энергосбережению и употребляя их в традиционных установках, как дублирующие, можно все шире внедрять и новые решения инженерного оборудования зданий и сооружений. И вдобавок во всем мире капитальные вложения в строительство являются самьш лучшим вложением средств!










Последнее изменение этой страницы: 2018-04-12; просмотров: 190.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...