Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Окисление загрязнителей сточных вод




Окислительный метод очистки применяют для обезвреживания производственных сточных вод, содержащих токсичные примеси (цианиды, комплексные цианиды меди и цинка) или соединения, которые нецелесообразно извлекать из сточных вод, а также очищать другими методами (сероводород, сульфиды).

Для очистки сточных вод используют следующие окислители: газообразный и сжиженный хлор, диоксид хлора, хлорат кальция, гипохлориты кальция и натрия, перманганат калия, бихромат калия, пероксид водорода, кислород воздуха, пероксосерные кислоты, озон, пиролюзит и др.

В процессе окисления токсичные загрязнения, содержащиеся в сточных водах, в результате химических реакций переходят в менее токсичные, которые удаляют из воды.

Активность вещества как окислителя определяется величиной окислительного потенциала. Первое место среди окислителей занимает фтор, который из-за высокой агрессивности не может быть использован на практике. Для других веществ величина окислительного потенциала равна: для озона - 2,07; для хлора - 0,94; для пероксида водорода - 0,68; для перманганата калия - 0,59.

Окисление активным хлором. Хлор и вещества, содержащие активный хлор, являются наиболее распространенными окислителями. Их используют для очистки сточных вод от сероводорода, гидросульфида, метилсернистых соединений, фенолов, цианидов и др.

При введении хлора в воду образуется хлорноватистая и соляная кислоты:

Cl2+H2O → HOCl+HCl

 

Окисление цианидов хлором можно проводить только в щелочной среде (pH >9-10)

CN-+2OH-+Cl2 → CNO-+2Cl-+2H2O

 

Образующиеся цианаты можно окислить до элементарного азота и диоксида углерода:

2CNO-+4OH-+3Cl2 → 2CO2+6Cl-+N2+H2O

 

При наличии в сточной воде аммиака, аммонийных солей или органических веществ, содержащих аминогруппы, хлор, хлорноватистая кислота и гипохлориты вступают с ними в реакцию, образуя моно- и дихлорамины, а также треххлористый азот:

NH3+HOCl → NH2Cl+H2O

NH2Cl+HOCl → NHCl2+H2O

NHCl2+HOCl → NCl3+H2O

 

Окисление кислородом воздуха. Реакция окисления кислородом идет в жидкой фазе при повышенных температуре и давлении. При окислении сточных вод целлюлозных, нефтеперерабатывающих и нефтехимических производств протекают следующие реакции:

2HS-+2O2 → S2O32-+H2O

HS-+3O2+2OH- → 2SO32-+2H2O

2HS-+4O2+2OH- → 2SO42-+2H2O

 

С повышением температуры и давления скорость реакции и глубина окисления сульфидов и гидросульфидов увеличиваются.

Кислород воздуха используют также при очистке воды от железа. В этом случае реакция окисления в водном растворе протекает по схеме:

4Fe2++O2+2H2O = 4Fe3++4OH-3++3H2O = Fe(OH)3+3H+

 

Озонирование. Озон - сильный окислитель, обладающий способностью разрушать в водных растворах при нормальной температуре многие органические вещества и примеси. Окисление озоном позволяет одновременно обеспечить обесцвечивание воды, устранение привкусов и запахов и обеззараживание. Озон окисляет как неорганические, так и органические вещества, растворенные в сточной воде. Озонированием можно очищать сточные воды от фенолов, нефтепродуктов, сероводорода, соединений мышьяка, ПАВ, цианидов, красителей, канцерогенных ароматических углеводородов, пестицидов и др. При обработке воды озоном происходит разложение органических веществ и обеззараживание воды; бактерии погибают в несколько тысяч раз быстрее, чем при обработке воды хлором.

При проведении реакции окисления сероводорода на первой стадии наблюдается выделение серы, а на второй - окисление непосредственно до H2SO4:

 

H2S+O3 → S+O2+H2O

H2S+4O3 → 3H2SO4

Реакции протекают одновременно, но при избытке озона преобладает вторая.

При окислении цианидов протекают следующие реакции:

CN-+O3 → CNO-+O2 -+2H++H2O → CO2+NH4

 

Озонолиз представляет собой процесс фиксации озона на двойной или тройной углеродной связи с последующим ее разрывом и образованием озонидов, которые, как и озон, являются нестойкими соединениями и быстро разлагаются.

Электрохимическое окисление. Электрохимические методы очистки основаны на электролизе производственных сточных вод. Химические превращения при электролизе могут быть весьма различными в зависимости от вида электролита, а также материала электродов и присутствия различных веществ в растворе. Основу электролиза составляют два процесса: анодное окисление и катодное восстановление.

Электрохимическую обработку целесообразно применять при очистке концентрированных органических и неорганических загрязнений и небольших расходах сточных вод.

В качестве анода используют электролитически нерастворимые материалы (уголь, графит, магнетит, диоксиды свинца, магния, рутения), нанесенные на титановую основу, в качестве катода - свинец, цинк и легированную сталь. Большое значение при электрохимическом окислении имеет плотность тока.

Чтобы предотвратить смешение продуктов электролиза, особенно газов (водорода и кислорода), которые могут образовать взрывоопасные смеси, применяют керамические, полиэтиленовые, асбестовые и стеклянные диафрагмы, разделяющие анодное и катодное пространство.

В процессе анодного окисления происходит деструкция органических веществе получением промежуточных или конечных продуктов окисления (органических кислот, СO2, Н2O).

При электролизе щелочных сточных вод, содержащих цианиды, на аноде происходит окисление цианид-ионов с образованием цианат-ионов и дальнейшим их электрохимическим окислением до конечных продуктов:

CN-+2OH--2e → CNO-+H2O

2CNO-+4OH--6e → 2CO2+N2+2H2O

 

В целях повышения электропроводимости сточных вод, снижения расхода электроэнергии и интенсификации процесса окисления веточные воды добавляют минеральные соли. Наиболее эффективно добавление хлорида натрия, который разлагается с выделением на аноде атомов хлора, участвующих в процессе окисления:

2Cl--2e → Cl2 2+CN-+2OH- → CNO-+2Cl-+H2O

 

Радиационное окисление. При действии излучений высоких энергий на водные среды, содержащие различные органические вещества, возникает большое число окислительных частиц, обусловливающих процессы окисления. Радиационно-химические превращения протекают не за счет радиолиза загрязняющих воду веществ, а за счет реакции этих веществ с продуктами радиолиза воды: ОН-, НO2- (в присутствии кислорода), Н2O2, Н+ и егидр (гидратированный электрон), первые три из которых являются окислителями. В качестве источников излучения могут быть использованы радиоактивные кобальт и цезий, тепловыделяющие элементы, радиационные контуры, ускорители электронов.

2.2 Физико-химические методы очистки .

Существует несколько вариаций физико-химических методов очистки. Такие как:

·коагуляция;

·флокуляция;

·окисление;

·сорбция;

·ионообменный метод;

·экстракция;

·электролиз;

·электрокоагуляция;

Ниже приведены более подробные описания основных методик данного метода.

Флотация

Флотация-один из видов адсорбционно-пузырькового разделения, основанный на формировании всплывающих агломератов (флотокомплексов) загрязнений с диспергированной газовой фазой и последующим их отделением в виде концентрированного пенного продукта (флотошлама). Традиционным признаком классификации флотационных сооружений принят способ получения диспергированной газовой фазы (ДГФ). Все существующие способы можно разделить на следующие группы: дробление газовой фазы (диспергирование) в толще жидкости; непосредственное выделение из обрабатываемой воды.

 

Коагуляция

Коагуляция - это слипание частиц коллоидной системы при их столкновениях в процессе теплового движения, перемешивания или направленного перемещения во внешнем силовом поле. В результате коагуляции образуются агрегаты - более крупные (вторичные) частицы, состоящие из скопления мелких (первичных). Первичные частицы в таких агрегатах соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсионной) среды. Коагуляция сопровождается прогрессирующим укрупнением частиц и уменьшением их общего числа в объеме дисперсионной среды (в нашем случае - жидкости). Слипание однородных частиц называется гомокоагуляцией, а разнородных - гетерокоагуляцией.

Флокуляция является одним из видов коагуляции, при которой мелкие частицы, находящиеся во взвешенном состоянии, под влиянием специально добавляемых веществ (флокулянтов) образуют интенсивно оседающие рыхлые хлопьевидные скопления.

Методы коагуляции и флокуляции широко распространены для очистки сточных вод предприятий химической, нефтехимической, нефтеперерабатывающей, целлюлозно-бумажной, легкой, текстильной и других отраслей промышленности. Эффективность коагуляционной очистки зависит от многих факторов: вида коллоидных частиц; их концентрации и степени дисперсности; наличия в сточных водах электролитов и других примесей; величины электрокинетического потенциала. В сточных водах могут содержаться твердые (каолин, глина, волокна, цемент, кристаллы солей и др.) и жидкие (нефть, нефтепродукты, смолы и др.) частицы.

При коагуляции хлопья образуются сначала за счет части взвешенных частиц и коагулянта или только коагулянта. Образовавшиеся хлопья последнего сорбируют вещества, загрязняющие сточные воды и, осаждаясь вместе с ними, очищают воду.

Основным процессом коагуляционной очистки производственных сточных вод является гетерокоагуляция - взаимодействие коллоидных и мелкодисперсных частиц сточных вод с агрегатами, образующимися при введении в сточную воду коагулянтов.

При использовании в качестве коагулянтов солей алюминия и железа в результате реакции гидролиза образуются малорастворимые в воде гидроксиды железа и алюминия, которые сорбируют на развитой хлопьевидной поверхности взвешенные, мелкодисперсные и коллоидные вещества и при благоприятных гидродинамических условиях оседают на дно отстойника, образуя осадок.

Для очистки производственных сточных вод применяют различные минеральные коагулянты:

Хлорид железа FeCl3 × 6H2O;

сульфат железаFe2(SO4)3 × 9H2O.

Соли магния.

Хлорид магния MgCl2 × 6H2O;

сульфат магния MgSO4-7H2O.

Известь.

Шламовые отходы и отработанные растворы отдельных производств. Хлорид алюминия (производство этилбензола), сульфат двухвалентного железа (травление металлов), известковый шлам и др.

Сорбция

Сорбция - это равновесный динамический процесс поглощения вещества из окружающей среды твердым телом, жидкостью или газом. Поглощающее тело называется сорбентом, а поглощаемое - сорбатом. Различают поглощение вещества всей массой жидкого или газообразного сорбента (абсорбция) и поверхностным слоем твердого или жидкого сорбента (адсорбция). Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом, называется хемосорбцией.

Адсорбция растворенных веществ - результат перехода молекулы растворенного вещества из раствора на поверхность твердого сорбента под действием силового поля поверхности. При этом наблюдаются два вида межмолекулярного взаимодействия: молекул растворенного вещества с молекулами (или атомами) поверхности сорбента и молекул растворенного вещества с молекулами воды в растворе (гидратация). Разность этих двух сил межмолекулярного взаимодействия и есть та сила, с которой удерживается извлеченное из раствора вещество на поверхности сорбента.

Чем больше энергия гидратации молекул растворенного вещества, тем большее противодействие испытывают эти молекулы при переходе на поверхность сорбента и тем слабее адсорбируется вещество из раствора. Поэтому сорбционная очистка сточных вод целесообразна, если в них содержатся соединения, энергия связи которых с твердой поверхностью сорбента значительно превосходит энергию гидратации.

Сорбционные методы относятся к наиболее эффективным для глубокой очистки сточных вод от растворенных органических веществ. Сорбционная очистка может применяться самостоятельно или совместно с другими методами предварительной и глубокой очистки сточных вод.

Преимуществами этих методов являются возможность адсорбции веществ из многокомпонентных смесей и высокая эффективность при малых концентрациях загрязнений сточных вод.

Сорбционные методы весьма эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей утилизацией и использованием очищенных сточных вод в системе оборотного водоснабжения промышленных предприятий.

В качестве сорбентов применяют природные материалы, отходы некоторых производств, активные угли и синтетические сорбенты. Природные пористые материалы, такие как торф, активные глины и производственные отходы (зола, коксовая мелочь, силикагели, алюмогели), обладают малой сорбционной емкостью, которая характеризуется количеством поглощаемого вещества на единицу объема или массы сорбента (кг/м³, кг/кг).

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 202.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...