Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Характеристика классификационных признаков




И классификация сталей

К числу современных классификационных признаков сталей относятся следующие:

- качество;

- химический состав;

- назначение;

- металлургические особенности производства;

- микроструктура;

- традиционный способ упрочнения;

- традиционный способ получения заготовок или деталей;

- прочность.

Кратко охарактеризуем каждый из них.

Качество сталиопределяется в первую очередь содержанием вредных примесей – серы и фосфора – и характеризуется по 4-м категориям (см. табл. 1.2).

Категория «обыкновенного качества» включает только углеродистые (по химическому составу) стали. Все остальные категории качества могут относиться к любым по степени легирования сталям.

По химическому составу стали условно разделяют на углеродистые (нелегированные) стали и легированные.

Углеродистые стали не содержат специально введенных легирую-щих элементов. Содержащиеся в углеродистых сталях элементы, кроме уг-

Таблица 1.2

КАТЕГОРИИ КАЧЕСТВА СТАЛИ

Наименование

категории

Содержание вредных примесей (не более), мас. %

Способ

обозначения в марке

серы фосфора
Обыкновенного качества 0,050 0,040 Системообразующий символ «Ст»
Качественная 0,035 0,035 Подробнее в разд. 1.2
Высококачественная 0,025 0,025 Символ «А» в конце марки
Особовысококачественная 0,015 0,015 Символ «-Ш» в конце марки

лерода, относятся к числу так называемых постоянных примесей. Их концентрация должна находиться в пределах, определяемых соответствующими государственными стандартами (ГОСТами). В таблице 1.3. даются усредненные предельные значения концентрации некоторых элементов, позволяющие относить эти элементы к разряду примесей, а не легирующих элементов. Конкретные пределы содержания примесей в углеродистых сталях дают ГОСТы.

 

Таблица 1.3.

ПРЕДЕЛЬНЫЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ЭЛЕМЕНТОВ, ПОЗВОЛЯЮЩИЕ СЧИТАТЬ ИХ ПОСТОЯННЫМИ ПРИМЕСЯМИ

УГЛЕРОДИСТОЙ СТАЛИ

Элемент в составе стали Mn Si Cr Ni Cu V
Предельная концентрация элемента как примеси в углеродистой стали, мас.%, не более 0,8 0.35 0.25 0.25 0.25 0.03

Легирующие элементы, иногда называемые легирующими добавками или присадками, специально вводятся в сталь для получения требуемой структуры и свойств.

Легированные стали подразделяются по суммарной концентрации легирующих элементов, кроме углерода, на низколегированные (до 2,5 мас.%), легированные (от 2,5 до 10 мас.%) и высоколегированные (более 10 мас.%) при содержании в последних железа не менее 45 мас.%. Обычно вводимый легирующий элемент дает легированной стали соответствующее название: «хромистая» – легированная хромом, «кремнистая» – кремнием, «хромокремнистая» – хромом и кремнием одновременно и т.д.

Кроме того, выделяют также ещё сплавы на основе железа, когда в составе материла железа менее 45%, но его более любого другого легирующего элемента.

По назначению стали подразделяют на конструкционные и инструментальные.

Конструкционными считаются стали, применяемые для изготовления различных деталей машин, механизмов и конструкций в машиностроении, строительстве и приборостроении. Должны обладать необходимой прочностью и вязкостью, а также, если требуется, комплексом специальных свойств (коррозионной стойкостью, парамагнетизмом и т. д.). Как правило, конструкционные стали являются низко- (или мало-) и среднеуглеродистыми. Твердость не является для них решающей механической характеристикой.

Инструментальными называются стали, применяемые для обработки материалов резанием или давлением, а также для изготовления измерительного инструмента. Должны обладать высокой твердостью, износостойкостью, прочностью и рядом других специфических свойств, например, теплостойкостью. Необходимым условием получения высокой твердости является повышенное содержание углерода, поэтому инструментальные стали, за редким исключением, всегда являются высокоуглеродистыми.

Внутри каждой из групп имеет место более детальное деление по назначению. Конструкционные стали подразделяют на строительные, машиностроительные и стали специального применения (с особыми свойствами – жаропрочные, жаростойкие, коррозионностойкие, немагнитные).

Инструментальные стали разделяют на стали для режущего инструмента, штамповые стали и стали для измерительного инструмента.

Общим эксплуатационным свойством инструментальных сталей является высокая твердость, обеспечивающая сопротивляемость инструмента деформации и истиранию его поверхности. В то же время к сталям для режущего инструмента предъявляется специфическое требование – сохранять высокую твердость при повышенных температурах (до 500…600ºС), которые развиваются в режущей кромке при больших скоростях резания. Указанная способность стали называется ее теплостойкостью (или красностойкостью). По указанному критерию стали для режущего инструментаподразделяют на нетеплостойкие, полутеплостойкие, теплостойкие и повышенной теплостойкости. Две последние группы известны в технике под названием быстрорежущих сталей.

От штамповых сталей, помимо высокой твердости, требуется большая вязкость, так как штамповый инструмент работает в условиях ударного нагружения. Кроме того, инструмент для горячей штамповки, соприкасаясь с нагретыми металлическими заготовками, при длительной работе может разогреваться. Поэтому стали для горячей штамповки должны быть еще и теплостойкими.

Стали для измерительного инструмента помимо высокой износостойкости, обеспечивающей точность размеров в течение длительного срока службы, должны гарантировать стабильность размеров инструментов независимо от температурных условий эксплуатации. Другими словами, они должны иметь очень небольшое значение коэффициента теплового расширения.










Последнее изменение этой страницы: 2018-04-12; просмотров: 424.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...