Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Скорость резания при сверлении и факторы, влияющие на ее величину.




Увеличение подачи и диаметра сверла ведет к росту площади срезаемого слоя и объёму снимаемого материала, что вызывает повышение осевой силы и крутящего момента.

Большее влияние на величины Po и Mкр оказывает диаметр, чем подача, т.к. диаметр при сверлении определяет глубину резания (t=D/2). При этом если подача примерно одинаково влияет как на осевую силу, так и на крутящий момент, то диаметр больше влияет на величину Mкр, чем на Po. Это объясняется тем, что при увеличении диаметра D увеличивается не только сила Pz, но и плечо, на котором действует данная сила.

Влияние угла геометрии сверла на осевую силу и крутящий момент представлено на рис.12. С увеличением угла наклона винтовой линии ω передний угол γ также возрастает. Повышение угла γ облегчает процесс резания, способствует снижению сил резания. Следовательно и осевая сила и крутящий момент будут уменьшаться.

Увеличение двойного угла в плане 2φ приводит к росту силы Рх, направленной вдоль оси сверла, и к снижению силы Рz. Следовательно с ростом угла 2φ осевая сила будет возрастать, а крутящий момент – снижаться.

При увеличении длины поперечной кромки lп(dс) возрастает площадь смятия материала и растет составляющая Рп (рис.13), увеличивается также плечо, на котором действуют силы Рzп. Следовательно с ростом длины поперечной кромки возрастает как осевая сила, так и крутящий момент (рис.13,а).

Длина поперечной кромки оказывает большее влияние на величину силы Ро, т.к. доля сил,действующих на поперечной кромке, в общей силе Ро составляет 57%, а доля крутящего момента от этих сил в общемМкр всего 8%.

При увеличении длины отверстия lотв возрастают силы трения (силы Ртр и Рzтр – рис.13,б). Следовательно с ростом длины отверстия осевая сила и крутящий момент увеличиваются (рис.13,б). Большее влияние величина lотв оказывает на крутящий момент Мкр, чем на силу Ро, т.к. доля момента от сил Рzтр составляет в общей величине МPzтр 7-12%, а доля сил Ртр в осевой силе всего 3%.

Мощность при сверлении складывается из двух составляющих – мощности затрачиваемой на вращение и на подачу (перемещение сверла):

Учитывая, что второе слагаемое существенно меньше первого, окончательно имеем: (кВт), Износ сверл происходит в результате выкрашивания режущих кромок, вызываемого повышенными скоростями резания, недостаточным охлаждением сверла, неправильной его заточкой (завышенные значения задних углов и ширины перемычки), недоброкачественной термической обработкой сверла (перегрев, обезуглероживание и т. д.).

Затупление режущих кромок наступает вследствие длительной работы сверла без переточки, повышенных скоростей резания и подачи, провертывания сверла в патроне и переходной втулке или в шпинделе. Быстрый и неравномерный износ режущих кромок наступает в результате высокой скорости резания, несимметричного расположения кромок, приводящего к повышенной нагрузке на одно перо сверла, перегрева сверла из-за недостаточного его охлаждения.

Разрушение ленточек происходит вследствие завышенной их ширины. Завышенная ширина ленточек способствует увеличению сил трения и налипанию стружки. Поломки сверл, обычно вызываемые назначением подачи выше допустимой для данного сверла (особенно для сверл малых диаметров); большой подачей при выходе сверла из просверливаемого сквозного отверстия, значительным износом ленточек сверла, уводом сверла, недостаточной длиной канавок для выхода стружки (вследствие чего она прессуется в канавках), образованием трещин на пластинке из твердого сплава или неправильной ее установкой в корпусе сверла, неоднородностью структуры материала заготовки (наличием раковин, твердых включений и т. д.).


 


Основное время при сверлении, зенкеровании и развертывании.

Основное (технологическое) время при сверлении, рассверливании, зенкеровании и развертывании определяется по формуле

Т = L / n ּ S мин,

где L — расчетная длина обработки в мм; n — число оборотов инструмента в мин; S — осевая подача инструмента в мм/об. Расчетная длина L определяется следующей суммой:

L = l + l1 + l2.

Величина врезания l1 мм при сверлении будет равна D/2 ּ ctg φ, а при рассверливании, зенкеровании и развертывании D – d / 2 ּ ctg φ. Величина выхода сверла l2 = 1 – 2 мм.


 


Классификация фрез и геометрия их зубъев.

Элементы конструкции, фрезы разных типов — это разновидности двух базовых конструкций: торцовой и цилиндрической. Так, например, дисковая пазовая (см. рис. 1.36, ж) и отрезная (см. рис. 1.36, з) фрезы представляют собой короткую или узкую цилиндрическую фрезу (см. рис. 1.36, а), дисковая двусторонняя (см. рис. 1.36, е) — короткую торцовую (см. рис. 1.36, б), дисковая трехсторонняя (рис. 1.36, д) — короткую торцовую с зубьями на обоих торцах, концевая цилиндрическая (см. рис.1.36, и, к л) — торцовую, но с хвостовиком, фасонная (см. рис. 1.36, п, р) — цилиндрическую с фасонной кромкой. Поэтому схемы работы фрез сводятся к цилиндрическому (рис. 1.39, а) и торцовому (рис. 1.39, б) фрезерованию, а все фрезы имеют сходные элементы конструкции: тело 1, у сборных конструкций ею называют корпусом, зубья 2, стружечные канавки 3 (рис. 1.39, а) и присоединительную часть в виде отверстия со шпоночной канавкой для закрепления на станке и передачи крутящег о момента у насадных фрез или в виде цилиндрического или конического хвостовика у концевых фрез. У торцовых фрез средних размеров крутящий момент передается шпоночным пазом на торце (см. рис. 1.37, в), а у крупных сборных конструкций — другими жесткими элементами. На каждом зубе фрезы различают переднюю поверхность 6, заднюю поверхность 4 и спинку зуба 5 (рис. 1.39, а).

Для повышения плавности работы и увеличения стойкости зубья фрез делают винтовыми, желательно с неравномерным шагом.

Форма зубьев фрез разного назначения различна. Все фрезы, за исключением фасонных, делаются с остроконечным зубом трех разновидностей. трапецеидальным, параболическим и усиленным, которые характеризуются параметрами, показанными на рис. 1.40.


 










Последнее изменение этой страницы: 2018-04-12; просмотров: 363.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...