Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

По назначению паровые котлы делятся на несколько групп: энергетические, промышленные, отопительные, утилизационные, энерготехнологические и специальные.




В зависимости от вида применяемого топлива газотурбинные станции работают по открытому (или разомкнутому) или по закрытому (замкнутому) циклу.

воздух     топливо         продукты сгорания        

                                                                                  

                         камера                                                                       

                        сгорания                         электрогенератор    

                                                                                                        

               компрессор             газовая турбина                                             

                                           Рис.3.

Рассмотрим простейшую газотурбинную установку (рис.3). Она состоит из воздушного компрессора, камеры сгорания и газовой турбины с электрогенератором.

Принцип работы газотурбинной установки (ГТУ) следующий: атмосферный воздух в компрессоре сжимается и под давлением поступает в камеру сгорания, куда подаётся также газообразное или жидкое топливо. Образовавшиеся продукты сгорания направляются из камеры сгорания в газовую турбину, для которой они служат рабочим телом. Отработавшие в турбине продукты сгорания выбрасываются в атмосферу. Большая часть мощности газовой турбины (до 65%) передаётся электрическому генератору, остальная потребляется воздушным компрессором.

Теперь разберём работу газотурбинной электростанции открытого типа.

Газотурбинная установка открытого типа ― это ГТУ, в которой рабочее тело поступает из атмосферы, однократно проходит через все элементы ГТУ и выбрасывается в атмосферу. ГТУ открытого типа выполняются по простому циклу (мы уже рассмотрели эту схему) и по сложным циклам.

Газотурбинные установки по сложным циклам включают одну или несколько ступеней промежуточного охлаждения воздуха при сжатии в компрессоре.

Температура отработавших газов при атмосферном давлении очень высока (380÷4400С). По этой причине велика потеря с физическим теплом уходящих газов. Тепло это можно частично использовать в регенераторе дл подогрева воздуха перед камерой сгорания.Регенератор (поверхностный теплообменник) служит для утилизации теплоты (охлаждения выхлопных газов) путём подогрева воздуха перед его подачей в камеру сгорания.Коэффициент теплопередачи от газа к воздуху через металлическую стенку невысок, поэтому поверхность нагрева, габариты и стоимость регенератора велики. Разместить регенератор можно на открытом воздухе, около здания электростанции или в пристройке к нему.

Первоначально газотурбинные установки предназначались для покрытия основной нагрузки, и их оборудовали, как правило, регенераторами.

В настоящее время признано, что газотурбинные установки должны служить для покрытия пиковой части нагрузки, регулирования частоты электрического тока, поэтому должны быть простыми и мобильными. На таких ГТУ с невысоким использованием мощности устанавливать регенератор нецелесообразно.

Мощность ГТУ открытого типа ограничена. При двух — трёх последовательно включённых компрессорах начальное давление газа перед турбиной не превышает 1,0÷1,5 МПа. А объём газа велик, что затрудняет повышение мощности такой установки.

На отечественных электростанциях с газовыми турбинами таких типов как ГТ-25-700, ГТУ-50-800, ГТ-100-750-2 принята начальная температура газов 700÷8000С, а на ГТУ-200-1000 ― 10000С.

Компоновка газотурбинных электростанций существенно отличается от компоновок паротурбинных электростанций. Газотурбинные агрегаты обычно устанавливаются поперечно в машинном зале с пролётом 36 м и ячейкой блока в 24 м. Дымовые газы отводятся в дымовую трубу высотой 120 м с тремя металлическими газоотводящими стволами.

Сочетание паротурбинной и газотурбинной установок, объединяемых общим технологическим циклом, называется парогазовой электростанцией. Смысл объединения этих установок в единое целое заключается в снижении потерь отработавшего тепла газовых турбин или тепла уходящих газов парогенераторов и, следовательно, в повышении КПД парогазовой электростанции по сравнению с отдельно взятыми паротурбинной или газотурбинной электростанциями.

Практическое применение нашли ПГУ:

1. С низконапорной паропроизводящей установкой (ННППУ).

2. С высоконапорной паропроизводящей установкой (ВНППУ).

3. С подогревом питательной воды паропроизводящей установке теплотой уходящих газов ГТУ.

4. С котлами-утилизаторами без промежуточного перегрева в паросиловой части цикла.

В основном применение в России получили парогазовые установки с высоконапорными парогенераторами и ПГУ со сбросом отработавших газов в топочную камеру парогенераторов.

Высоконапорный парогенератор работает на газовом или очищенном жидком топливе с давлением в топочной камере и газоходах 0,45÷0,55 МПа. Дымовые газы, выходящие из парогенератора с высокой температурой и избыточным давлением, направляются в газовую турбину. На одном валу с газовой турбиной находится воздушный компрессор, нагнетающий воздух в топочную камеру парогенератора.

Особенностью такой парогазовой установки заключается в том, что не требуется дымосос для удаления уходящих газов высоконапорного парогенератора.Уходящие газы являются рабочим телом газовой турбины, которая используется для привода электрогенератора, и, кроме того, воздушного компрессора, замещающего дутьевой вентилятор.

Пар из высоконапорного парогенератора направляется к конденсационной паровой турбине, имеющей обычную тепловую схему, то есть с регенеративным подогревом, деаэрацией и т.д.

Благодаря использованию уходящих газов парогенератора в турбине и дополнительному использованию отработавшего тепла газовой турбины в экономайзерах для подогрева питательной воды парогенератора, КПД такой парогазовой электростанции с высоконапорным парогенератором выше, чем КПД паротурбинной, а тем более газотурбинной электростанции, и может достичь 42÷43%.

Применение схемы со сбросом отработавших газов турбины в топочную камеру парогенератора основано на том, что в камере сгорания топливо в газообразном состоянии сжигают с большим избытком воздуха. По этой причине содержание кислорода в отработавших газах турбины достаточное (16÷18%) для сжигания основной массы топлива в парогенераторе.

Парогазовые электростанции со сбросом отработавших газов в топочную камеру парогенератора имеют те преимущества, что при этом используется парогенератор обычной конструкции и возможно использование в нём любого вида топлива (твёрдого, жидкого, газового).В камере сгорания газотурбинной установки сжигают при этом в относительно меньшем количестве газ или жидкое топливо.

Парогазовая установка может состоять из паротурбинного и газотурбинного энергоблоков обычного типа. Примером может служить сочетание серийного паротурбинного энергоблока 300 МВт с газотурбинной установкой ГТ-100-750-2.

Такое объединение двух установок в общий парогазовый энергоблок имеет целью быстрое увеличение мощности паротурбинным блоком на 40÷45 МВт при отключении регенеративных подогревателей высокого давления (ПВД) в периоды пиковых нагрузок и быстрого их роста. Чтобы сохранить нормальный режим работы парогенератора, питательную воду подогревают отработавшими газами газотурбинной установки, например, в двух последовательно включённых дополнительных экономайзерах. При этом температура отработавших газов ГТУ снижается примерно до 1900С, КПД комбинированного парогазового энергоблока достигает примерно 40% при значении КПД паротурбинного энергоблока около 39%.

К парогазовым относятся также установки с парогазовыми турбинами, работающими на парогазовой смеси. В такой установке в камеру сгорания для снижения температуры продуктов сгорания топлива до требуемого значения впрыскивают воду. Испаряясь, вода с газами в виде парогазовой смеси направляется в турбину. Использование воды в камере сгорания позволяет снизить избыток воздуха для горения по сравнению с обычной газотурбинной установкой и, следовательно, несколько повысить КПД установки. Отработавшая парогазовая смесь удаляется в атмосферу непосредственно или через регенератор, в котором подогревается вода перед камерой сгорания.

Все схемы парогазовой установки предполагают частичное или полное использование высококачественного органического топлива (природного газа или жидкого газотурбинного топлива), что тормозит их широкое внедрение. В качестве примера: ПГУ мощностью 250 МВт установлена на Молдавской ГРЭС. За рубежом парогазовые установки получили широкое распространение: США, Англия, Япония, Германия, Франция. Лучшие зарубежные ПГУ работают с КПД нетто 46÷49%, они полностью автоматизированы.

Большое разнообразие существующих схем парогазовых установок и сложные связи между основным оборудованием ПГУ ― газовой турбиной, паровым котлом, паровой турбиной ― вызывают определённые трудности при расчёте энергетических показателей ПГУ. Эти трудности возрастают при комбинированной выработке в ПГУ электрической и тепловой энергии.

Парогазовые установки характеризуются сложным распределением теплоты топлива между видами отпускаемой энергии, что необходимо учитывать при определении энергетических показателей.

Парогазовые установки со сбросом газов газовой турбины в топку парового котла характеризуются тем, что уходящие газы газовой турбины являются высокоподогретыми (до 450÷5500С) окислителем с содержанием кислорода 14÷16%. По этой причине их целесообразно использовать для сжигания основной массы топлива в паровом котле.

Парогазовые установки с котлами-утилизаторами почти нигде не применяется из-за небольшой мощности установки и низкого КПД, так как пар в таком котле можно нагреть лишь до начальных параметров пара: давление ―4,0÷4,4 МПа и температура 400÷4600С.

5. Выбор основного и вспомогательного оборудования ТЭС. Назначение, принцип работы, схемы включения и конструкции теплообменных аппаратов, деаэраторов, охладителей пара и дренажа, испарителей и паропреобразователей.

Теплоэлектростанции большой мощности являются паротурбинными установками, основными агрегатами которых являются парогенератор и паровая турбина с электрогенератором.

Современный энергетический котлоагрегат большой мощности представляет собой очень большое и сложное сооружение. Так, например, котлоагрегат, обслуживающий турбину мощностью 300 МВт, производит в час более 900 т пара давлением до 24 МПа и температурой до 5650С. Такой котёл потребляет примерно от 150 до 300 т/ч угля в зависимости от его качества и более 900 т/ч воды.

Все технологические процессы такого котлоагрегата механизированы и автоматизированы. Котлоагрегат обслуживается многочисленным вспомогательными механизмами, приводимыми в движение десятками электродвигателей, причём мощность их достигает несколько тысяч кВт.

Габариты такого котла весьма внушительны: высота около 45 метров. Вес только металлических частей агрегата доходит до 4500 тонн. Ещё более крупными являются котлоагрегаты, обслуживающие турбины мощностью 500, 800 и 1200 МВт.

Таким образом, паровой котёл является основным агрегатом тепловой электростанции. Паровым котлом называется устройство для выработки пара с давлением выше атмосферного за счёт теплоты сжигаемого топлива.Необходимая тепловая мощность парогенератора определяется его паропроизводительностью при обеспечении установленных рабочих температуры и давления перегретого пара. При этом в топке котла сжигается расчётное количество топлива.

По назначению паровые котлы делятся на несколько групп: энергетические, промышленные, отопительные, утилизационные, энерготехнологические и специальные.

Энергетические котлы отличаются высокой единичной паропроизводительностью, повышенными параметрами пара, высокими требованиями к надёжности и экономичности и т.д.

Промышленные паровые котлы вырабатывают пар для технологических нужд промышленности.

Отопительные котлы производят горячую воду для отопления промышленных, жилых и общественных зданий.

Водогрейный котёл служит для получения горячей воды с давлением выше атмосферного. Они могут использоваться как пиковые для выдачи сетевой воды на отопление от 100 до 1500С.

Котлы-утилизаторы и энерготехнологические используют резервы вторичных энергетических ресурсов при переработке отходов химических производств, бытового мусора как на мусоросжигательном заводе в г. Владивосток и т.д.

Мы с вами в основном будем изучать энергетические парогенераторы.

По давлению пара на выходе из котла они делятся на котлы низкого давления (до 1 МПа), среднего (1÷10 МПа), высокого (14 МПа), сверхвысокого (18÷20 МПа) и сверхкритического давления (более 22,5 МПа).










Последнее изменение этой страницы: 2018-04-12; просмотров: 238.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...