Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные понятия и определения в области измерений. Сущность измерений.




ЛЕКЦИЯ № 1

Дисциплина:
«МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ И КОНТРОЛЯ»

Тема:

«Измерения. Измерительные задачи.

Классификация измерений».


Вопросы:  

Основные понятия и определения в области измерений. Сущность измерений.

Измерительные задачи.

Виды измерительных сигналов.

Классификация измерений по видам измерений.

Год

Основные понятия и определения в области измерений. Сущность измерений.

Современный этап научно-технического прогресса характеризуется интенсивным повышением интереса к измерениям. Возрастающий интерес к измерениям обуславливается тем, что они играют всё более значительную, а иногда определяющую роль в решении, как фундаментальных проблем познания, так и практических проблем научно-технического прогресса, социальных проблем, повышают эффективность всей общественно-полезной деятельности. Измерения являются основным процессом получения объективной информации о свойствах разнообразных материальных объектов, связанных с практической деятельностью человека. Например, о годности какой-либо детали по ее размерам мы можем судить только после измерений этих размеров.

Измерение– это процесс получения объективной информации, отражающей действительный, а не предполагаемый материальный, научно- технический потенциал общества, достигнутый уровень общественного производства и т.п. На информации, получаемой путём измерений, основываются решения органов управления экономическим развитием на всех уровнях.

Все предприятия, деятельность которых связана с разработкой, испытаниями, производством, контролем продукции, с эксплуатацией транспорта и средств связи, со здравоохранением и др., проводят неисчислимое количество измерений. На основе результатов измерений принимаются конкретные решения.

На схеме, представленной на рис. 1.1, показаны основные элементы, логически связанные между собой при измерениях.

 

Измерения основаны на сравнении одинаковых свойств материальных объектов. Для свойств, при количественном сравнении которых применяются физические методы, установлено единое обобщённое понятие – физическая величина.

Физическая величина– это свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. Индивидуальность в количественном отношении следует понимать в том смысле, что свойство может быть для одного объекта в определённое число раз больше или меньше, чем для другого.

 

 

Рис.1. Схема основных элементов, участвующих в измерениях.

 

К физическим величинам относятся: длина, масса, время, электрические величины (ток, напряжение и т.п.), давление, скорость движения и т.п.

Но запах не является физической величиной, так как он устанавливается с помощью субъективных ощущений.

Определение “физической величины” можно подкрепить примером. Возьмём два объекта: подшипник качения бытового пылесоса и подшипник качения вагонных колёс. Качественные свойства у них одинаковые, а количественные разные. Так диаметр наружного кольца подшипника качения вагонных колёс во много раз больше аналогичного диаметра подшипника пылесоса. Аналогично можно судить и о количественном соотношении массы и других свойств. Но для этого необходимо знать значение физической величины, т.е. оценить физическую величину в виде некоторого числа принятых для неё единиц. Например, значение массы подшипника качения вагонных колёс 8 кг, радиус земного шара 6378 км, диаметр отверстия 0,5 мм.


Истинное значение физической величины– это значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Оно является пределом, к которому приближается значение физической величины с повышением точности измерений.

Определить экспериментально истинное значение физической величины невозможно, оно остаётся неизвестным экспериментатору. В связи с этим при необходимости (например, при проверке средств измерений) вместо истинного значения физической величины используют её действительное значение.

Действительное значение физической величины– это значение физической величины, найденное экспериментальным путём и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

При нахождении действительного значения физической величины поверка средств измерений должна осуществляться по образцовым мерам и приборам, погрешностями которых можно пренебречь.

При технических измерениях значение физической величины, найденное с допустимой погрешностью, принимается за действительное значение.

Основная физическая величина– это физическая величина, входящая в систему и условно принятая в качестве независимой от других величин этой системы. Например, в системе СИ основными физическими величинами, независимыми от других, являются длина l, масса m, время t и др.

Производная физическая величина– физическая величина, входящая в систему и определяемая через основные величины этой системы. Например, скорость v определяется в общем случае уравнением:

 

                                              v=dl/dt,                                       (1)

 

где l – расстояние; t – время.

Ещё пример. Механическая сила в этой же системе определяется уравнением:

 

                                            F=m*a,                                        (1)

 

где m – масса; a - ускорение, вызываемое действием силы F.

Мерой для количественного сравнения одинаковых свойств объектов служит единица физической величины– физическая величина, которой по определению присвоено числовое значение, равное единице. Единицам физических величин присваивается полное и сокращённое символьное обозначение – размерность. Например, масса – килограмм (кг), время – секунда (с), длина – метр (м), сила – Ньютон (Н).

Приведённые выше определения физической величины и её значения позволяют определить измерение как нахождение значения физической величины опытным путём с помощью специальных технических средств.

Это определение справедливо как для простейших случаев, когда, прикладывая линейку с делениями к детали, сравнивают её размер с единицей длины, хранимой линейкой, или когда с помощью прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, так и для более сложных – при использовании измерительной системы (для измерения нескольких величин одновременно).

Для более полного раскрытия понятия “измерение” знания одной его сути недостаточно. Необходимо выявить ещё и те условия, соблюдение которых является обязательным при выполнении измерений. Эти условия можно сформулировать, исходя из метрологической практики, обобщив её требования, а также исходя из определения понятия “измеряемая физическая величина”:

измерения возможны при условии, если установлена качественная определённость свойства, позволяющая отличить его от других свойств (т.е. при выделении физической величины среди других);

    определена единица для определения величины;

имеется возможность материализации (воспроизведения или хранения) единицы;

сохранение неизменным размера единицы (в пределах установленной точности) минимум в течение срока проведения измерений.

Если нарушается хотя бы одно из этих условий, измерения невыполнимы. Приведённые условия могут служить основой, во-первых, при рассмотрении содержания понятия “измерение”, во-вторых, при проведении чёткой границы между измерением и другими видами количественных оценок. От термина “измерение” происходит термин “измерять”, который широко используется на практике. Однако нередко применяются неверные термины: “мерить”, ”обмерять”, ”замерять”, ”промерять”, не вписывающиеся в систему метрологических терминов.

В технической литературе, посвящённой измерениям или средствам измерений, иногда можно прочесть об измерении процессов или зависимостей. Процесс, как объект измерить нельзя. Измеряют физические величины, их характеризующие. Например, нельзя сказать: “измерить деталь”. Следует уточнить, какие именно физические величины, свойственные детали, подлежат измерению (длина, диаметр, масса, твёрдость и др.). Это же относится и к процессам, включая быстродействующие, а также к зависимостям между физическими величинами.

Так, при нахождении зависимости уменьшения длины тела от изменения температуры измеряемыми величинами будут приращение температуры и удлинение тела, по значениям которых вычисляется указанная зависимость.

Эти вычисления можно осуществлять при помощи ЭВМ, сопряжённых со средством измерений, однако это не означает, что измеряется зависимость (она вычисляется). При использовании так называемых средств статистических измерений (в быстропротекающих процессах) допускаются такие, например, выражения, как: “измерение среднеквадратического значения напряжения случайного процесса”, “измерение плотности распределения вероятности” и др.

Следует отметить, что не все физические величины могут быть воспроизведены с заданными размерами и непосредственно сравнимы с себе подобными. К таким величинам относятся, например, температура, твёрдость материалов и т.п. В этом случае находит применение метод натуральных (реперных) шкал, заключающийся в следующем. Предметы и явления, обладающие некоторыми однородными свойствами, располагают в натуральный последовательный ряд так, что у каждого предмета в этом ряду данного свойства будет больше, чем у предыдущего и меньше, чем у последующего. Далее выбирают несколько членов ряда и принимают их за образцы. Выбранные образцы формируют шкалу (лестницу) реперных точек для сопоставления предметов или явлений по данному свойству. Примерами реперных шкал являются минералогическая шкала твёрдости, шкала силы ветра в “баллах Бофорта”.

Существенный недостаток таких шкал состоит в произвольном размере интервалов между реперными точками и невозможность уточнения размера физической величины внутри интервала.

В связи с этим в измерительной технике отдаётся предпочтение функциональным шкалам, при построении которых используется функциональная зависимость какой-либо физической величины, удобной для непосредственного измерения, от измеряемой физической величины. Чаще всего эта зависимость имеет линейный характер. В качестве примера можно привести температурную шкалу, например, Цельсия. При построении шкалы используются реперные точки, которым приписаны определённые значения температур, например, точка таяния льда (0,000о С), точка кипения воды (100,000о С) и т.п. В интервалах между температурами реперных точек осуществляется интерполяция с помощью тех или иных преобразователей температуры – ртутных термометров, термопар, платиновых термометров сопротивления. При этом измеряемая температура преобразуется в перемещение конца ртутного столбика, в ЭДС термопары или в сопротивление платинового резистора.



Измерительные задачи.

Основными задачами измерений являются:

- определение количественного значения физической величины;

- определение погрешности измерений.

 

Измерение – сложный информационный процесс. На всех этапах передачи информации возникает ее искажение, т.е. погрешности.

Погрешность средства измерения – отклонение показания средства измерения от истинного (действительного) значения измеряемой величины. Оно характеризует точность результатов измерений, проводимых данным средством.

Эти два понятия во многом близки друг к другу и классифицируются по одинаковым признакам.

Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-2013 термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью.

 

По характеру проявления погрешности делятся на случайные, систематические и грубые (промахи).

Систематическая погрешность – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности могут быть предсказаны, обнаружены и, благодаря этому, почти полностью устранены введением соответствующей поправки или регулировкой средства измерения.

Случайная погрешность – составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же значения физической величины, проведённых с одинаковой тщательностью в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики. В отличие от систематических, случайные погрешности нельзя исключить из результатов измерений путём введения поправки, однако их можно существенно уменьшить путём увеличения числа наблюдений и их статистической обработки. Поэтому для получения результата, минимально отличающегося от истинного значения измеряемой величины, проводят многократные измерения физической величины с последующей математической обработкой экспериментальных данных.

Грубая погрешность (промах) – это случайная погрешность результата отдельного наблюдения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Они, как правило, возникают из-за ошибок или неправильных действий оператора (его психофизиологического состояния, неверного отсчёта, считывания показаний с соседней шкалы прибора, ошибок в записях или вычислениях, неправильного включения приборов или сбоев в их работе и др.). Возможной причиной возникновения промахов также могут быть кратковременные резкие изменения условий проведения измерений. Если промахи обнаруживаются в процессе измерений, то результаты, их содержащие, отбрасывают. Однако чаще всего промахи выявляют только при окончательной обработке результатов измерений с помощью специальных статистических критериев.

В зависимости от причин возникновения различают  инструментальные, методические и субъективные погрешности.

Инструментальная погрешность – погрешность, присущая самому средству измерений, т.е. тому прибору или преобразователю, при помощи которого выполняется измерение. Причинами инструментальной погрешности могут быть несовершенство конструкции средства измерений, влияние окружающей среды на его характеристики, деформация или износ деталей прибора и т.п.

Методическая погрешность появляется вследствие несовершенства метода измерения; несоответствия измеряемой величины и её модели, принятой при разработке средства измерения; влияния средства измерений на объект измерения и процессы, происходящие в нём. Отличительной особенностей методических погрешностей является то, что они не могут быть указаны в нормативно-технической документации на средство измерения, поскольку от него не зависят, а должны определяться оператором в каждом конкретном случае.

Субъективная (личная) погрешность измерения обусловлена погрешностью отсчёта оператором показания по шкалам средства измерений, диаграммам регистрирующих приборов. Они вызываются состоянием оператора, его положением во время работы, несовершенством органов чувств, эргономическими свойствами средства измерений. Характеристики субъективной погрешности определяют на основе нормированной номинальной цены деления шкалы измерительного прибора (или диаграммной бумаги регистрирующего прибора) с учётом способностей "среднего оператора" к интерполяции в пределах деления шкалы. Эти погрешности уменьшаются по мере совершенствования приборов, например: применение светового указателя в аналоговых приборах устраняет погрешность вследствие параллакса, применение цифрового отсчёта исключает субъективную погрешность.

Объективная погрешность измерения – погрешность, не зависящая от личных качеств человека, производящего измерение.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 975.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...