Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Усилители электрических сигналов




Усилитель электрических сигналов - это электронное устройство, предназначенное для увеличения мощности, напряжения или тока сигнала, подве­денного к его входу, без существенного искажения его формы. Электрическими сигналами могут быть гармонические колебания ЭДС, тока или мощности, сигналы прямо­угольной, треугольной или иной формы. Частота и форма колебаний являются существенными факторами, опреде­ляющими тип усилителя. Поскольку мощность сигнала на выходе усилителя больше, чем на входе, то по закону со­хранения энергии усилительное устройство должно включать в себя источ­ник питания. Т.о., энергия для работы усилителя и нагрузки подводится от источника питания. Тогда обобщенную структурную схему усилительного устройства можно изобразить, как показано на рисунке 9.1.

Рисунок 9.1 - Обобщенная структурная схема усилителя

 

Электрические колебания поступают от источника сигнала на вход усилителя, к выходу ко­торого присоединена нагрузка, энергия для работы усилителя и нагрузки подводится от источника питания. От источника питания усилитель отбирает мощность Ро- необходимую для усиления входного сигнала. Источник сигнала обеспечивает мощность на входе усилителя Рвх, выходная мощностьРвых выделяется на активной части нагрузки. В усилителе для мощностей выполняется неравенство: Рвх< Рвых < Ро. Следовательно, усилитель - это управляемый входным сигналом преобразователь энергии источника питания в энергию выходного сигнала.

Преобразование энергии осуществляется с помощью усилительных элементов (УЭ): биполяр­ных транзисторов, полевых транзисторов, электронных ламп, интегральных микросхем (ИМС), варикапов и других.

Простейший усилитель содержит один усилительный элемент. В большинстве случаев одного элемента недостаточно и в усилителе применяют несколько активных элементов, которые соединяют по ступенчатой схеме: колебания, усиленные первым элементом, поступают на вход второго, затем третьего и т. д. Часть усилителя, составляющая одну ступень усиления, называется каскадом.

Усилитель состоит из активных и пассивных элемен­тов: к активным элементам относятся транзисторы, микросхемы и другие нелинейные элементы, обладающие свойством изменять электропроводность между выходными электродами под воздействием управляюще­го сигнала на входных электродах. Пассивными элементами являются резисторы, конденсаторы, катушки индуктивности и другие элементы, формирующие необхо­димый размах колебаний, фазовые сдвиги и другие па­раметры усиления. Таким образом, каждый каскад усилителя состоит из минимально необходимого набора активных и пассивных элементов.

Структурная схема типичного многокаскадного усилителя приведена на рисунке 9.2.

Рисунок 9.2 - Схема многокаскадного усилителя

 

Входной каскад и предварительный усилитель предназначены для усиления сигнала до значения, необходимого для подачи на вход усилителя мощно­сти (выходного каскада). Количество каскадов предварительного усиления оп­ределяется необходимым усилением. Входной каскад обеспечивает, при необ­ходимости, согласование с источником сигнала, шумовые параметры усилителя и необходимые регулировки.

Выходной каскад (каскад усиления мощности) предназначен для отдачи в нагрузку заданной мощности сигнала при минимальных искажениях его формы и максимальном КПД.

Источниками усиливаемых сигналов могут быть микрофоны, считывающие головки магнитных накопителей информации, различные преобразователи неэлектрических параметров в электрические.

Нагрузкой являются громкоговорители, электрические двигатели, сигнальные лампы, нагреватели и т. д. Источники питания вырабатывают энергию с заданными параметрами — номинальными значениями напряжений, токов и мощности. Энергия расходуется в коллекторных и базовых цепях транзисторов, в цепях накала и анод­ных цепях ламп; используется для поддержания задан­ных режимов работы элементов усилителя и нагрузки. Нередко энергия источников питания требуется и для работы преобразователей входных сигналов.

Классификация усилительных устройств.

Усилительные устройства классифицируют по различным признакам.

По виду усиливаемых электрических сигналов усилители подразделяют на усилители гармонических (непрерывных) сигналов и усилители импульсных сигналов.

По ширине полосы пропускания и абсолютным значениям усиливаемых частот усилители подразделяются на следующие типы:

-усилители постоянного тока (УПТ) предназначены для усиления сигналов в пределах от низшей частоты fн = 0 до верхней рабочей частоты fв. УПТ усиливает как переменные составляющие сигнала, так и его постоянную составляющую. УПТ широко применяются в устройствах автоматики и вычислительной техники.

-усилители напряжения, в свою очередь подразделяются на:

а) усилители низкой частоты, УНЧ,

б) усилители высокой частоты, УВЧ,

в) усилители сверхвысокой частоты, СВЧ.

-избирательные усилители (усилители высокой частоты - УВЧ), для которых действительно отношение частот fв/fн≈1;

-широкополосные усилители с большим диапазоном частот, для которых отношение частот fв/fн>>1 (например УНЧ - усилитель низкой частоты).

-усилители мощности- оконечный каскад УНЧ с трансформаторной развязкой. Для того, чтобы мощность была максимальной Rвн. к = Rн, т.е. сопротивление нагрузки должно быть равно внутреннему сопротивлению коллекторной цепи ключевого элемента (транзистора).

По конструктивному исполнению усилители можно подразделить на две большие группы: усилители, выполненные с помощью дискретной технологии, то есть способом навесного или печатного монтажа, и усилители, выполненные с помощью интегральной технологии. В настоящее время в качестве активных элементов широко используются аналоговые интегральные микро­схемы (ИМС).

Генераторы

Для подробного изучения поведения электронных устройств необходимо, не подключая их в процесс производства или, например, изучения полосы пропускания звукового усилителя, убедится, что функционируют они так, как планировалось при конструировании.

Для имитации реальных процессов с различными формами электрических сигналов, генерирования периодически повторяющихся сигналов применяются генераторы и таймеры.

Электронные цепи, в которых периодические изменения напряжения и тока возникают без приложения к ним дополнительного периодического сигнала, называются автономными автоколебательными цепями, а устройства, выполненные на их основе, — автогенераторами или генераторами колебаний соответствующей формы. Эти цепи следует рассматривать как преобразователи энергии источника питания постоянного тока в энергию периодических электрических колебаний.

Автогенераторы можно разделить на генераторы импульсов и генераторы синусоидальных колебаний.

Генераторы импульсов в зависимости от формы выходного напряжения делят на генераторы:

o синусоидальных, гармонических колебаний (сигналов) (генератор Мейснера, генератор Хартли (индуктивная трёхточка), генератор Колпитца (ёмкостная трёхточка) и др.);

o прямоугольных импульсов - мультивибраторы, тактовые генераторы;

o функциональный генератор - прямоугольных, треугольных и синусоидальных импульсов;

o генератор линейно-изменяющегося напряжения (ГЛИН);

o генератор шума;

o генератор импульсов, вершина которых имеет колоколообразную форму (блокинг-генератор).

Существуют также генераторы более сложных сигналов, таких, как телевизионная испытательная таблица.

· По частотному диапазону:

o Низкочастотные

o Высокочастотные

· По принципу работы:

o Стабилизированные кварцевым резонатором - Генератор Пирса

o Блокинг-генераторы

o LC-генераторы

o RC-генераторы

o Генераторы на туннельных диодах

· По назначению:

o Генератор тактовых импульсов.

Для получения незатухающих колебаний во всех названных автогенераторах используются компоненты электроники, на вольт - амперных характеристиках которых имеется или создан с помощью цепи положительной ОС участок с отрицательным дифференциальным сопротивлением.

Дискретные устройства

Способы представления информации

При использовании в качестве носителя информации электрических сигналов возможны две её формы:

1) аналоговая – электрический сигнал аналогичен исходному в каждый момент времени, т.е. непрерывен во времени. Температура, давление, скорость изменяются по непрерывному закону – датчики преобразуют эти величины в электрический сигнал, который изменяется по такому же закону (аналогичен). Величины, представленные в такой форме, могут принимать бесконечно много значений в каком-то диапазоне.

2) дискретная - импульсная и цифровая – сигнал представляет собой последовательность импульсов, в которых закодирована информация. При этом кодируются не все значения, а только в конкретные моменты времени – дискретизация сигнала.

Импульсный режим работы - кратковременное воздействие сигнала чередуется с паузой.

По сравнению с непрерывным (аналоговым), импульсный режим работы имеет ряд преимуществ:

- большие значения выходной мощности на такой же объем электронного устройства и более высокий коэффициент полезного действия;

- повышение помехоустойчивости, точности и надежности электронных устройств;

- уменьшение влияния температур и разброса параметров приборов, так как работа осуществляется в двух режимах: «включено» - «выключено»;

- реализация импульсных устройств на однотипных элементах, легко выполняемых методом интегральной технологии (на микросхемах).

На рисунке 10.3 а представлены способы кодирования непрерывного сигнала прямоугольными импульсами – процесс модуляции.

Амплитудно-импульсная модуляция (АИМ) - амплитуда импульсов пропорциональна входному сигналу.

Широтно-импульсная модуляция (ШИМ) - ширина импульсов tимп пропорциональна входному сигналу, амплитуда и частота импульсов постоянны.

Частотно-импульсная модуляция (ЧИМ) - входной сигнал определяет частоту следования импульсов, которые имеют постоянную длительность и амплитуду.

Наиболее распространены импульсы прямоугольной формы. На рисунке 10.3, б приведена периодическая последовательность прямоугольных импульсов и их основные параметры. Импульсы характеризуются следующими параметрами: Uм - амплитуда импульса; tимп - длительность импульса; tпаузы - длительность паузы между импульсами; Tп = tи + tп - период повторения импульсов; f = 1/Tп - частота повторения импульсов; Q = Tп /tи - скважность импульсов.

 

б)

Рисунок 9.3 – а) Способы кодирования непрерывного сигнала прямоугольными импульсами, б) Основные параметры прямоугольных импульсов

 

Наряду с прямоугольными импульсами в электронной технике широко применяются импульсы пилообразной, экспоненциальной, трапециидальной и другой формы.

Цифровой режим работы - информация передается в виде числа, которому соответствует определенный набор импульсов (цифровой код), при этом существенно только наличие или отсутствие импульса.

Цифровые устройства чаще всего работают только с двумя значениями сигналов – нулём «0» (обычно низкий уровень напряжения или отсутствие импульса) и «1» (обычно высокий уровень напряжения или наличие прямоугольного импульса), т.е. информация представляется в двоичной системе счисления.

Это обусловлено удобством создания, обработки, хранения и передачи сигналов, представленных в двоичной системе: ключ замкнут – разомкнут, транзистор открыт – закрыт, конденсатор заряжен – разряжен, магнитный материал намагничен – размагничен и т.д.

Цифровая информация представляется двумя способами:

1) потенциальным - значениям «0» и «1» соответствуют низкий и высокий уровни напряжения.

2) импульсным - двоичным переменным соответствует наличие или отсутствие электрических импульсов в определённые моменты времени.



Список литературы

 

1 Москатов Е. А. Книга «Электронная техника. Начало»

2 Бессонов В. В. Книга «Электроника для начинающих и не только», 2001 г.

3 Сайт «MadElectronics»

4 Сайт «Electronic Info»

5 Сайт «Ferra.ru»

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 355.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...