Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Диффузия растворенных газов




Благодаря малым размерам молекул, газы в биологических средах диффундируют с относительно высокой скоростью. Они хорошо проникают из окружающей среды в кровь, а затем из крови в ткани. Это справедливо не только для веществ, участвующих в процессе дыхания (кислород, диоксид углерода), но и для подавляющего большинства газообразных токсикантов.

Количество газа, растворенного в жидкости, определяется:

1. Величиной его парциального давления в газовой смеси над жидкостью;

2. Свойствами жидкости;

3. Температурой.

Количество газа (объем), растворяющегося в единице объема жидкости при стандартных условиях и значении его парциального давления 1 атм, характеризуется коэффициентом поглощения (абсорбции) Бунзена ( ). С повышением температуры понижается. Понижение значения коэффициента Бунзена отмечается также при повышении ионной силы раствора (все биологические жидкости в сравнении с водой).

Поскольку величина коэффициента диффузии для различных газов практически одинакова, их накопление в тканях, определяется парциальным давлением и растворимостью в биологических жидкостях. В таблице 4 представлены значения коэффициентов для некоторых газов. Обращает на себя внимание высокая растворимость аммиака и низкая таких газов, как кислород, азот и т.д. В целом прослеживается следующая закономерность - чем лучше растворяется газ в воде, тем большая его часть, при ингаляции, связывается верхними дыхательными путями, легочной тканью, и тем меньшая проникает во внутренние среды организма. В этой связи аммиак, при ингаляции, будет оказывать преимущественно местное действие на верхние отделы дыхательных путей, сероводород - не только местное раздражающее, но и резорбтивное действие, оксид углерода - только системное действие.

Таблица 4. Коэффициенты поглощения Бунзена для ряда газов в воде (20оС)

ГАЗ 20
Азот Водород Оксид углерода Кислород Этилен Оксид азота Диоксид углерода Ацетилен Сероводород Аммиак 0,015 0,018 0,023 0,031 0,122 0,629 0,879 1,030 2,583 702,0

Биологически значимы различия в абсорбционной способности СО2 и О2. При физиологических условиях ткани лучше отдают диоксид углерода, чем поглощают кислород. В этой связи обмен веществ в клетках в значительно большей степени лимитирован скоростью проникновения в ткани О2, чем высвобождением ими СО2. Различия в способности этих газов растворяться в жидкостях, важны и при формировании токсического отека легких, вызванного ингаляцией некоторых токсикантов, например хлора или фосгена. При накоплении отечной жидкости в альвеолах увеличивается толщина барьера, отделяющего кровь от воздуха. Вследствие существенных различий в способности кислорода и диоксида углерода растворяться в жидкостях, для О2 отечная жидкость, инфильтрирующая альвеолярно-капиллярный барьер, представляет плохо преодолеваемую преграду, для СО2 - нет. В результате, на фоне токсического отека легких развивается гипоксия при нормальном содержании (или даже пониженном) СО2. Поскольку углекислый газ является стимулятором дыхательного центра, его недостаток в крови усугубляет и без того тяжелое состояние отравленного. Методом повышения содержания О2 в крови является увеличение его парциального давления во вдыхаемом воздухе.

Осмос

Осмос - процесс перемещения растворителя через мембрану, не проницаемую для растворенного вещества, в сторону его более высокой концентрации.

Биологические жидкости представляют собой многокомпонентные растворы, в которых осмотическое давление всех растворенных частиц пропорционально их общей концентрации. При интоксикациях осмотическое давление внутри и вне клеток за счет попадания во внутреннюю среду молекул токсикантов практически не изменяется. Тем не менее это явление имеет определенное токсикологическое значение.

Клетки организма ведут себя, как осмометр, снабженный полупроницаемой мембраной. Если они взаимодействуют с гипоосматической средой, внутрь клеток поступает вода. В результате увеличивается их объем. При значительном увеличении объема клеточная мембрана разрушается, клеточное содержимое выходит в среду. Это явления называется цитолизом (для эритроцитов - гемолизом). Вещества, нарушающие эластичность биологических мембран (мышьяковистый водород, сурьмянистый водород и др.), снижают резистентность клеток к колебаниям осмотического давления среды и вызывает гемолиз. Реакция антиген-антитело может приводить к существенному изменению проницаемости клеточных мембран, а это в свою очередь также становится причиной лизиса клеток. В гиперосмотической среде клетки отдают воду, и объем их уменьшается (в крови появляются "звездчатые" эритроциты).

В целом явление осмоса оказывает несущественное влияние на токсикокинетические характеристики ксенобиотиков. Однако при назначении осмотических диуретиков удается существенно повысить интенсивность процесса отделения мочи путем увеличения осмотического давления жидкости внутри почечных канальцев, и затруднения тем самым реабсорбции воды. В этих условиях ускоряется процесс элиминации выделяемых через почки некоторых ксенобиотиков и продуктов их метаболизма.

Фильтрация

Под фильтрацией понимают процесс просачивания жидкости с растворенными в ней молекулами веществ под действием механической силы (гидростатическое, осмотическое давление) через пористые мембраны, задерживающие крупнодисперсные частицы. Размер фильтруемых частиц определяется размерами пор мембраны. Поскольку диаметр пор биологических мембран мал, в организме путем фильтрации разделяются не только грубодисперсные "частицы" (клетки крови), но и растворенные в биологических жидкостях молекулы (ультрафильтрация).

Скорость фильтрации или объем жидкости, проходящий через пористую мембрану за единицу времени зависит от:

1. Различия гидростатического давления по обе стороны мембраны, т.е. градиента давления;

2. Вязкости жидкости, которая в свою очередь, зависит от температуры;

3. Проницаемости мембраны, которая определяется размерами пор, их числом, структурой, особенностями взаимодействия стенки мембраны с жидкостью;

4. Площади фильтрующей поверхности.

На скорость фильтрации ксенобиотиков в органах, кроме того, влияют дополнительные факторы:

1. Детерминированные свойствами организма: давление крови, количество функционирующих фильтрующих образований (капилляров, почечных клубочков и т.д.);

2. Обусловленные свойствами веществ: размеры и форма молекул, особенности взаимодействия с порами.

Фильтрация осуществляется главным образом в капиллярном отделе кровеносного русла: капилляры проницаемы для низкомолекулярных веществ. На принципе фильтрации основана работа гломерулярного аппарата почек, в котором происходит образование первичной мочи. Путем фильтрации из организма выделяется подавляющее большинство ксенобиотиков.

Капиллярная фильтрация

На распределение жидкости между интра- и экстравазальным пространствами тканей влияют следующие факторы:

- давление крови в капиллярном русле (рк);

- давление жидкости вне капиллярного русла (ртк);

- колоидосмотическое давление крови ( к);

- колоидосмотическое давление тканевой жидкости ( тк).

Результирующее давление определяется как:

Рэф = рк - ртк - к + тк

На рисунке 4 схематично представлен обмен жидкостью между капиллярным руслом и тканями. Давление крови в артериальном отделе капилляра составляет около 32 мм Hg, в венозном - 17 мм Hg, давление тканевой жидкости - 3 мм Hg. Колоидосмотическое давление крови равно 25 мм Hg и тканевой жидкости - 5 мм Hg. Следовательно, эффективное давление в артериальном отделе капилляра составляет около +9 мм Hg, в венозном - -6 мм Hg. Это означает, что в артериальном отделе капилляра происходит фильтрация, а в венозном - реабсорбция жидкости. В итоге, движение жидкости через стенку сосуда зависит от разницы р - , а 90% отфильтрованной в артериальной части капилляра жидкости возвращается в венозном отделе обратно в капиллярное русло. Абсорбция не реабсорбировавшихся 10% жидкости удаляется из тканей по лимфатическим сосудам.

Из этого следует, что при введении веществ непосредственно в кровь, они активно фильтруются в ткани, и наоборот, вещества попадающие в межклеточное пространство, например при подкожном или накожном введении - активно абсорбируются в кровяное русло. В основе действия веществ, усиливающих или блокирующих проницаемость капилляров, лежит не только способность изменять размеры и количество пор в стенке сосуда, но и влияние на диаметр капилляров в артериальном и венозном отделах, т.е внутрикапиллярное давление.

 

Рисунок 4. Обмен жидкости между капилляром и окружающей тканью










Последнее изменение этой страницы: 2018-04-12; просмотров: 269.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...