Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Степени свободы токсического воздействия




С усложнением организации биосистем формируются новые структуры, появляются новые функции, в результате увеличивается разнообразие способов их повреждения химическими веществами. Так, путем образования и совершенствования биологических мембран в процессе эволюции, происходит отграничение формирующихся организмов от окружающей среды. На определенном этапе мембраны представляют собой новое качество, обеспечивающее структурную целостность зарождающейся жизни. Токсиканты, способные в силу особенностей химического строения избирательно взаимодействовать только с компонентами биологических мембран, не действуют на элементы живого, лишенные мембранных структур.

Высшие организмы, характеризующиеся большой массой и высокой степенью организации, имеют специальные анатомо-физиологические образования, обеспечивающие обмен веществом и энергией со средой (например, сердечно-сосудистая система, выделительная система и т.д.). Естественно, что вещество, избирательно взаимодействующее со структурно-морфологическими элементами этих систем, не будет оказывать токсического действия на организмы, лишенные их.

С увеличением сложности организации живого эволюционно формируются регуляторные системы и системы, обеспечивающие межклеточное взаимодействие в организме (нервная система, эндокринная система). Эти элементы живого организма также становятся мишенями избирательного воздействия ксенобиотиков. Однако, зрительные галлюцинации, под влиянием психодислептиков (ДЛК, псилоцин, пиперидилгликоляты и др.) могут возникнуть только у существа с высоко организованной нервной системой, развитым зрительным анализатором.

И так, суммируя сказанное: по мере совершенствования организации живой материи возрастает многообразие её форм, появляются всё новые структурные элементы, вспомогательные системы, обеспечивающие жизнедеятельность; одновременно увеличивается количество способов, с помощью которых возможно повреждение биологических систем токсикантами; спектр веществ, способных оказывать неблагоприятное действие на организм высших животных и человека, значительно богаче, чем токсикантов, действующих на растения и примитивные одноклеточные и многоклеточные организмы.

ГЛАВА 1.4. СВОЙСТВА ТОКСИКАНТА, ОПРЕДЕЛЯЮЩИЕ ТОКСИЧНОСТЬ

Токсичность разных веществ не одинакова. Поскольку она проявляется во взаимодействии ксенобиотика с биологической системой, её величина зависит от свойств как токсиканта, так и биосистемы и в конечном итоге определяется:

1. Способностью вещества достичь структуры-мишени, взаимодействие с которой инициирует токсический процесс;

2. Характером и прочностью связи, образующейся между токсикантом и структурой-мишенью;

3. Значением структуры-мишени для поддержания гомеостаза в организме.

Строение биологических систем, особенности их морфо-функциональной организации в значительной степени неизменны в масштабах исторически обозримого времени. В этой связи, поскольку вещество обладает вполне определенными свойствами, оно оказывает на организм (биологическую систему) воспроизводимый с известным постоянством эффект. Изменение свойств действующего фактора (воздействие другим веществом) будет сопровождаться качественными и/или количественными изменениями развивающихся эффектов. Важнейшим принципом токсикологии является зависимость качественных и количественных характеристик развивающегося токсического процесса от строения действующего вещества.

Строение вещества определяет размеры молекулы, её массу, растворимость, летучесть, агрегатное состояние при нормальных условиях и химическую активность. Все эти свойства влияют на токсичность вещества, вместе с тем, ни одно из них не является единственно значимым.

Размеры молекулы

Размеры молекулы токсиканта оказывают влияние на его биологическую активность в силу ряда причин:

а). С увеличением молекулярной массы затрудняется процесс поступления токсиканта в организм и распределения его в органах и тканях.

Низкомолекулярные, инертные в химическом отношении вещества в виде газа или в форме раствора, как правило, легко проникают в кровь через лёгкие, желудочно-кишечный тракт, иногда и кожу, быстро распределяются в тканях, проходя через гистогематические барьеры. Однако уже для низкомолекулярных соединений способность проникать через барьеры во многом определяется растворимостью. Гидрофильные молекулы даже с молекулярной массой 50 - 100 Д обладают ограниченной способностью проникать, например, через слизистые оболочки.

Для высокомолекулярных соединений процесс прохождения через барьерные структуры, как правило, затруднен. С другой стороны липофильные вещества, порой, не смотря на большие размеры молекул, относительно легко проходят через биологические барьеры. Большие молекулы веществ плохо растворимых в воде и липидах (искусственные и естественные полимеры) практически не проникают во внутренние среды организма и, следовательно, не обладают общетоксическим действием.

б). С увеличением молекулярной массы увеличивается число возможных изомерных форм молекулы токсиканта и, одновременно, возрастает специфичность их действия.

Поскольку структуры организма, вступающие во взаимодействие с токсикантом, в большинстве случаев имеют вполне определённую пространственную организацию, активность действующего вещества существенно зависит от его конформации. Чем больше молекула, тем отчетливее выступает эта зависимость. Так, низкомолекулярные предельные углеводороды и некоторые их производные действуют практически неспецифично, причем, как на одноклеточные, так и на сложно организованные многоклеточные организмы. Малые размеры этих молекул обусловливают ограниченное количество их изомерных форм, а следовательно увеличивают количество участков их неспецифического связывания в организме.

С увеличением размеров молекул веществ возрастает число токсикантов, имеющих одинаковую массу и близкое строение, но обладающих совершенно различной токсичностью. Так, из более чем 100 изомеров тетрахлор-пара-дибензодиоксина, высокой токсичностью обладает лишь один: 2,3,7,8-тетрахлор-пара-дибензодиоксин.

Для группы высокомолекулярных веществ (полимеры), однако, также достаточно характерно неспецифическое действие. Оно может быть обусловлено, например, модификацией коллоидно-осмотического давления крови.

в). С увеличением размеров молекулы возрастает вероятность взаимодействия токсикантов с биосубстратом за счет сил Ван-дер-Ваальса (см. ниже).

Чем больше размеры молекулы, тем большее число атомов токсиканта контактирует с участком его связывания, тем прочнее формирующаяся при этом связь. Поскольку большие молекулы обладают известной "гибкостью", это в ещё большей степени способствует "прижиманию" лиганда к рецептору, то есть увеличению его афинности. В основном за счет сил Ван-дер-Ваальса нейромедиаторы, гормоны (и другие эндогенные биорегуляторы) взаимодействуют с рецепторным аппаратом клеток, органов, тканей. Однако силы эти, как правило, не велики и сразу после воздействия происходит диссоциация комплекса биорегулятор-рецептор. Отдельные токсиканты, напоминающие строением эндогенные биологически активные вещества, также вступают во взаимодействие с рецепторами, имитируя (агонисты) их эффекты. Такой механизм лежит в основе токсического действия многих алкалоидов (никотина, анабазина и др.), гликозидов, синтетических токсикантов и т.д. Если токсикант имеет существенно большие размеры, чем естественный агонист, то за счет сил Ван-дер-Ваальса осуществляется его прочная фиксация на рецепторе. Это приводит к экранированию рецепторов от действия агонистов, их блоку (антагонисты). Так действуют, например, атропин и курарин на, соответственно, М- и Н-холинорецепторы, ДЛК - на рецепторы серотонина, и т.д. Среди токсичных веществ значительно большее число является антагонистами соответствующих молекул-биорегуляторов.










Последнее изменение этой страницы: 2018-04-12; просмотров: 246.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...