Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Научение как реактивация процессов развития




 

В настоящее время становится общепризнанным, что многие закономерности модификации функциональных и морфологических свойств нейронов, а также регуляции экспрессии генов, лежащие в основе научения у взрослых, сходны с теми, что действуют на ранних этапах онтогенеза (см. в [Анохин, 1996]). Это даёт авторам основание рассматривать научение как «реювенилизацию» или «реактивацию процессов развития», имеющих место в раннем онтогенезе. В рамках ТФС, наряду с признанием специфических характеристик ранних этапов индивидуального развития по сравнению с поздними [Александров, 1989; Шулейкина, Хаютин, 1989], уже довольно давно психофизиологами [Швырков, 1978], физиологами [Судаков, 1979] и психологами [Шадриков, 1982] было обосновано представление о том, что системогенез имеет место не только в раннем онтогенезе, но и у взрослых, так как формирование нового поведенческого акта есть формирование новой системы.

Позднее был сделан вывод о том, что принципиальным для понимания различий роли отдельных нейронов в обеспечении поведения является учёт истории формирования поведения [Александров, Александров, 1980], т.е. истории последовательных системогенезов, и разработана системно-селекционная концепция научения [Shvyrkov, 1986]. Она представляет собой составную часть системно-эволюционной теории, которая сформулирована В.Б. Швырковым [1995] и является важнейшим компонентом методологической базы системной психофизиологии. Основное содержание этой теории будет изложено в настоящем и в следующем параграфе.

 

Научение – селекция или инструкция?

 

Системно-селекционной концепции созвучны современные идеи о «функциональной специализации», пришедшие на смену идеям «функциональной локализации», и о селективном (отбор из множества клеток мозга нейронов с определёнными свойствами), а не инструктивном (изменение свойств, «инструктирование» клеток соответствующими сигналами) принципе, лежащем в основе формирования нейронных объединений на ранних и поздних стадиях онтогенеза [Edelman, 1987]. Дж. Эдельмен приводит аргументы против инструктивного принципа, заключающиеся в том, что этот принцип требует точной копии каждого сигнала. Копия может формироваться новыми структурами, включающими старые компоненты, или совершенно новыми структурами. В первом случае необходим механизм высшего порядка (гомункулус) для различения старых и новых элементов; во втором случае система будет быстро истощена. Именно поэтому альтернативным вариантом является селекция. Принцип селекции означает, что в мозгу формируются группы нейронов, каждая из которых по-своему активируется при определённых изменениях внешней среды. Специфика группы обусловлена как генетическими, так и эпигенетическими модификациями, происшедшими независимо от упомянутых изменений. Когда происходит определённое изменение среды, оно приводит к отбору из числа имеющихся такой группы, которая, в терминах Дж. Эдельмена, может обеспечить надлежащую реакцию. Изменение среды и группа могут считаться соответствующими друг другу в том случае, если клетки последней отвечают на данное изменение более или менее специфично. Селекция имеет место уже при созревании мозга в раннем онтогенезе, в процессе которого множество (50% и более) нейронов гибнет. Отобранные же клетки составляют первичный ассортимент. Вторичный ассортимент, полагает Дж. Эдельмен, формируется в результате селекции, происходящей в процессе поведенческого взаимодействия со средой. Как справедливо считает Э.С. Рид [Reed, 1993], принятие положения о селекции как основе развития на всех его этапах устраняет дихотомию между созреванием и научением.

Дж. Эдельмен проводит аналогию между селекцией нейронов, селекцией в эволюции и клональной селекцией в иммунологии. Гарантия успеха во всех случаях – предсуществующее многообразие нейронов, индивидов или лимфоцитов. Так, в иммунологии раньше считалось, что антиген «инструктирует», изменяет лимфоцит. Однако затем стало ясно, что антиген «отбирает» лимфоцит, обладающий соответствующими свойствами, и соединяется с ним. Отобранные лимфоциты начинают делиться, образуя популяцию однородных клеток (клон). В результате продукция необходимых в данном случае антител увеличивается в 105 – 106 раз.

В рамках системно-селекционной концепции научения формирование новой системы рассматривается как фиксация этапа индивидуального развития – формирование нового элемента индивидуального опыта в процессе научения. Известно, что как молекулярно-биологическое, так и морфологическое «обеспечение» достижения одного и того же результата нового поведенческого акта сразу после завершения обучения и через несколько часов или дней после этого существенно различаются [Роуз, 1995; Анохин, 1996]. Возможно, в процессе фиксации элемента опыта действует принцип минимального обеспечения систем (см. ранее). Сравнительный анализ нейронного обеспечения реализации данного элемента на ранней стадии его существования, когда упомянутая ранее модификация морфологических свойств нейронов ещё не произошла, и на поздних стадиях, по-видимому, является актуальной задачей.

 

Системная специализация и системоспецифичность нейронов

 

Специализация нейронов относительно вновь формируемых систем – системная специализация – постоянна, т.е. нейрон системоспецифичен. В настоящее время обнаружены нейроны, специализированные относительно самых разнообразных элементов опыта: актов использования определённых слов у людей [Heit et al., 1988], актов «социального контакта» с определёнными особями в стаде у обезьян [Perrett et al., 1996], актов инструментального поведения у кроликов [Александров, 1989; Швырков, 1989, 1995], актов ухода за новорождёнными ягнятами у овец [Kendrick et al., 1992].

Селекция нейронов из резерва (ранее молчавших, неактивных клеток; подробнее см. в гл. 15) зависит от их индивидуальных свойств, т.е. от особенностей их метаболических «потребностей». Можно полагать, что именно нарастание разнообразия метаболических «потребностей» нейронов обусловливает филогенетическое усложнение поведения: белковый и пептидный состав нейронов усложняется в филогенезе (см. в [Шерстнев и др., 1987]).

Положение о селекции и системоспецифичности не означает абсолютной предопределённости: как в раннем онтогенезе селекция не означает полной готовности, предопределённости моделей результатов даже видоспецифических актов – они формируются в зависимости от особенностей индивидуального развития (см. в [Александров, 1989; Хаютин, Дмитриева, 1991]), так и у взрослого наличие групп нейронов со специфическими свойствами, которые могут быть отобраны при научении, по-видимому, означает возможность сформировать не определённый акт, а определённый класс актов. Выяснение границ и характеристик подобных классов – перспективная задача.

В процессе формирования индивидуального опыта вновь сформированные системы не сменяют предсуществующие, но «наслаиваются» на них. Что значит «не сменяют, но наслаиваются»? Ответ на этот вопрос будет дан в следующем параграфе.

 

 

СТРУКТУРА И ДИНАМИКА СУБЪЕКТИВНОГО МИРА ЧЕЛОВЕКА И ЖИВОТНЫХ

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 311.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...