![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задача максимизации объема производства.Стр 1 из 2Следующая ⇒
Нелинейное программирование
Задачи оптимизации, в которых целевая функция не является линейной функцией своих аргументов или среди условий, определяющих их допустимые значения, могут быть нелинейные уравнения и неравенства, называются задачами нелинейного программирования. Нелинейное программирование широко применяется в экономике при управлении товарными ресурсами, планировании обслуживания и ремонта оборудования и послужило основой широкого использования математических методов в экономике. В качестве примеров рассмотрим две простейших задачи нелинейного программирования: задачу минимизации расходов при реализации продукции и задачу максимизации объема производства.
Задача минимизации расходов Фирма реализует автомобили двумя способами: через розничную торговлю и оптом. При реализации Математическая модель задачи заключается в следующем: Найти неотрицательное решение уравнения
при котором функция
Так как целевая функция не является линейной, то эта задача является задачей нелинейного программирования. Найдем ее решение, используя геометрическую интерпретацию. Так как Если проводить эти окружности из точки C, то нетрудно догадаться, что минимальное значение функция Решая систему уравнений
находим координаты точки D:
Задача максимизации объема производства.
Для пошива пальто и курток швейная фабрика использует ткань двух типов. На изготовление одного пальто расходуется 2 м Для решения задачи снова построим математическую модель. Обозначим через (3) Кроме того, по смыслу задачи они должны быть неотрицательными: (4) Прибыль фабрики по условию определяется формулой: (5) Итак, математическая модель задачи такова: найти числа Так как целевая функция снова не является линейной, то эта задача, как и предыдущая, является задачей нелинейного программирования. Найдем ее решение, используя снова геометрическую интерпретацию. Так как Условия (3) и (4) определяют четырехугольник OABC (рис 1.2), координаты точек которого являются неотрицательными решениями системы (3).
Поэтому функция max
В рассмотренных примерах точки, в которых целевая функция принимала оптимальное значение, не являлись вершинами многоугольника допустимых решений, и область допустимых решений не всегда является многоугольником. Поэтому метод перебора вершин многоугольника допустимых решений задачи линейного программирования и связанный с ним симплекс-метод неприменимы для решения задач нелинейного программирования.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 222. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |