Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Микробиологический диагноз холеры. Правила взятия материала для исследования. Выделение возбудителя и его идентификация, определение биовара. Основные принципы терапии холеры.




Лабораторная диагностика. Основным и решающим методом диагностики холеры является бактериологический. Материалом для исследования - испражнения и рвотные массы; на вибриононосительство исследуют ис­пражнения; у лиц, погибших от холеры, для исследования берут лигированный от­резок тонкого кишечника и желчный пузырь; из объектов внешней среды чаще всего исследуют воду открытых водоемов и сточные воды.

При проведении бактериологического исследования необходимо соблюдать сле­дующие три условия:

1) как можно быстрее произвести посев материала от больного (холерный виб­рион сохраняется в испражнениях короткий срок);

2) посуда, в которую берут материал, не должна обеззараживаться химическими веществами и не должна содержать их следы, так как холерный вибрион к ним очень чувствителен;

3) исключить возможность загрязнения и заражения окружающих.

Выделение культуры проводят по схеме: посев на ПВ, одновременно на щелоч­ной МПА или какую-либо избирательную среду (лучше всего TCBS). С ПВ делают пересев на щелочной МПА. Подозрительные колонии (стекло­видно-прозрачные) пересевают для получения чистой культуры, которую иденти­фицируют по морфологическим, культуральным, биохимическим свойствам, по­движности и окончательно типируют с помощью диагностических агглютинирую­щих сывороток О-, QR-, Инаба и Огава и фагов (ХДФ).

Предложены различные варианты ускоренной диагностики, наилучшим из них является люминесцентно-серологический метод. Он позволяет обнаружить холерный вибрион непосред­ственно в исследуемом материале (или после предварительного подращивания в двух пробирках с 1 %-ной ПВ, в одну из которых добавляют холерный фаг) в те­чение 1,5—2 ч. Для ускоренного обнаружения холерного вибриона Нижегород­ским ИЭМ предложен набор бумажных индикаторных дисков, состоящих из 13 биохимических тестов (оксидаза, индол, уреаза, лактоза, глюкоза, сахароза, манноза, арабиноза, маннит, инозит, аргинин, орнитин, лизин), которые позволя­ют дифференцировать представителей рода Vibrio от родов Aeromonas, Plesiomortas, Pseudomonas, Comamonas и от семейства Enterobacteriaceae.

Для быстрого обнару­жения холерного вибриона в испражнениях и в объектах внешней среды может быть использована РПГА с антительным диагностикумом. С целью выявления не- культивируемых форм холерного вибриона в объектах внешней среды применяют только метод цепной полимеразной реакции.

Серологическая диагностика холеры имеет вспомогательный характер. С этой целью может быть использована реакция агглютинации, но лучше — определение титра вибриоцидных антител или антитоксинов (антитела к холерогену определяют иммуноферментным или иммунофлуоресцентным методами).

 

Лечение больных холерой должно заключаться прежде всего в регидратации и восстановлении нормального водно-солевого обмена. С этой целью рекомендует­ся использовать солевые растворы, например такого состава: NaCl — 3,5; NaHC03 — 2Д КС1 - 1,5 и глюкоза - 20,0 г на 1 л воды. Такое патогенетически обоснованное лечение в сочетании с рациональной антибиотикотерапией позволяет снизить ле­тальность при холере до 1 % и менее.

 

 

                                                                 «КАПЕЛЬНЫЕ» ИНФЕКЦИИ                                                                                                                                                                                                   1. Возбудитель дифтерии. Характеристика морфологических, культуральных и биохимических свойств. Типы дифтерийной палочки. Токсин, структура, механизм действия, генетический контроль синтеза токсина. Патогенез дифтерии. Специ­фическая профилактика.

Дифтерия — острое инфекционное заболевание преимущественно детского возраста, которое проявляется глубокой интоксикацией организма дифтерийным токсином и характерным фибринозным воспалением в месте локализации возбу­дителя. Название болезни происходит от греческого слова diphthera — кожа, плен­ка, так как в месте размножения возбудителя образуется плотная, серовато-белого цвета пленка.

Возбудитель дифтерии — Corynebacterium diphtheriae — был обнаружен впервые в 1883 г. Э. Клебсом в срезах из пленки, получен в чистой культуре в 1884 г. Ф. Леф- флером. В 1888 г. Э. Ру и А. Иерсен обнаружили его способность продуцировать эк­зотоксин, играющий главную роль в этиологии и патогенезе дифтерии. Получение в 1892 г. антитоксической сыворотки Э. Берингом и использование ее с 1894 г. для лечения дифтерии позволило значительно снизить летальность. Успешное наступле­ние на эту болезнь началось после 1923 г. в связи с разработкой Г. Районом метода получения дифтерийного анатоксина.

Возбудитель дифтерии относится к роду Corynebacterium (класс Actinobacteria). В морфологическом отношении характеризуется тем, что клетки булавовидно утол­щены на концах (греч. согупе — булава), образуют ветвление, особенно в старых культурах, и содержат зернистые включения.

В состав рода Corynebacterium входит большое число видов, которые делят на три группы.

1)Коринебактерии — паразиты человека и животных и патогенные для них.

2)Коринебактерии, патогенные для растений.

3)Непатогенные коринебактерии. Многие виды коринебактерий являются нор­мальными обитателями кожи, слизистых зева, носоглотки, глаз, дыхательных пу­тей, уретры и половых органов.

С. diphtheriae — прямые или слегка изогнутые неподвижные палочки длиной 1,0-8,0 мкм и диаметром 0,3-0,8 мкм, спор и капсул не образуют. Очень часто они имеют вздутия на одном или обоих концах, часто содержат метахроматические гра­нулы — зерна волютина (полиметафосфаты), которые при окрашивании метилено- вым синим приобретают голубовато-пурпурный цвет. Для их обнаружения предло­жен особый метод окрашивания по Нейссеру. При этом палочки окрашиваются в со­ломенно-желтый, а зерна волютина — в темно-коричневый цвет, и располагаются обычно по полюсам. С. diphtheriae хорошо окрашивает ся анилиновыми красителями, грамположительна, но в старых культурах нередко обесцвечивается и имеет отрицательную окраску по Граму. Для нее характерен вы­раженный полиморфизм, особенно в старых культурах и под влиянием антибиоти­ков (см. рис. 102.1). Содержание Г + Ц в ДНК около 60 мол %.

Дифтерийная палочка является аэробом или факультативным анаэробом, темпе­ратурный оптимум для роста 35—37 °С (границы роста 15—40 °С), оптимальная рН 7,6—7,8. К питательным средам не очень требовательна, но лучше растет на сре­дах, содержащих сыворотку или кровь. Избирательными для дифтерийных бакте­рий являются свернутые сывороточные среды Ру или Леффлера, рост на них появ­ляется через 8—12 ч в виде выпуклых, величиной с булавочную головку колоний се­ровато-белого или желтовато-кремового цвета. Поверхность их гладкая или слегка зернистая, на периферии колонии несколько более прозрачные, чем в центре. Коло­нии не сливаются, вследствие чего культура приобретает вид шагреневой кожи. На бульоне рост проявляется в виде равномерного помутнения, либо бульон остается прозрачным, а на его поверхности образуется нежная пленка, которая постепенно утолщается, крошится и хлопьями оседает на дно.

Особенностью дифтерийных бактерий является их хороший рост на кровяных и сывороточных средах, содержащих такие концентрации теллурита калия, которые по­давляют рост других видов бактерий. Это связано с тем, что С. diphtheriae восстанавли­вают теллурит калия до металлического теллура, который, откладываясь в микробных клетках, придает колониям характерный темно-серый или черный цвет. Применение таких сред повышает процент высеваемости дифтерийных бактерий (рис. 103).

С. diphtheriae ферментируют глюкозу, мальтозу, галактозу с образованием кислоты без газа, но не ферментируют (как правило) сахарозу, имеют цистиназу, не имеют уреазы и не образуют индола. По этим признакам они отличаются от тех коринеформ- ных бактерий (дифтероидов), которые чаще других встречаются на слизистой обо­лочке глаза (С. xerosus) и носоглотки (С. pseudodiphtheriticum) и от других дифтероидов (табл. 44).

В природе существуют три основных варианта (биотипа) дифтерийной палочки: gravis, intermedins и mitis. Они различаются по морфологическим, культуральным, биохимическим и другим свойствам.

 

Экзотоксин синтезируется в виде неактивного предшественника - единой поли­пептидной цепи с м. м. 61 кД. Его активация осуществляется собственной бактери­альной протеазой, которая разрезает полипептид на два связанные между собой ди- сульфидными связями пептида: А (м. м. 21 кД) и В (м. м. 39 кД). Пептид В выполняет акцепторную функцию — он распознает рецептор, связывается с ним и формирует внутримембранный канал, через который проникает в клетку пептид А и реализует биологическую активность токсина. Пептид А представляет собой фермент АДФ- Рибозилтрансферазу, который обеспечивает перенос аденозиндифосфатрибозы из НАД на один из аминокислотных остатков (гистидина) белкового фактора элонга­ции EF-2. В результате модификации EF-2 утрачивает свою активность, и это приводит подавлению синтеза белка рибосомами на стадии транслокации. Токсин синтези­руют только такие С. diphtheriae, которые несут в своей хромосоме гены умеренного конвертирующего профага. Оперон, кодирующий синтез токсина, является моноци- стронным, он состоит из 1,9 тыс. пар нуклеотидов и имеет промотор toxP и 3 участ-ка: toxS, toxA и toxB. Участок toxS кодирует 25 аминокислотных остатков сигнально­го пептида (он обеспечивает выход токсина через мембрану в периплазматическое пространство бактериальной клетки), toxA — 193 аминокислотных остатка пептида А, и toxB — 342 аминокислотных остатка пептида В токсина. Утрата клеткой профага или мутации в tox-опероне делают клетку малотоксигенной. Напротив, лизогениза- ция нетоксигенных С. diphtheriae конвертирующим фагом превращает их в токсиген- ные бактерии. Это доказано однозначно: токсигенность дифтерийных бактерий зависит от лизогенизации их конвертирующими tox-коринефагами. Коринефаги ин­тегрируются в хромосому коринебактерий с помощью механизма сайт-специфичес­кой рекомбинации, причем штаммы дифтерийных бактерий могут содержать в своих хромосомах по 2 сайта рекомбинации (attB), и коринефаги интегрируются в каждый из них с одинаковой частотой.

 Генетический анализ ряда нетоксигенных штаммов дифтерийных бактерий, про­веденный с помощью меченых ДНК-зондов, несущих фрагменты tox-оперона кори- нефага, показал, что в их хромосомах имеются последовательности ДНК, гомоло­гичные Юх-оперону коринефага, но они либо кодируют неактивные полипептиды, либо находятся в «молчащем» состоянии, т. е. неактивны. В связи с этим возникает очень важный в эпидемиологическом отношении вопрос: могут ли нетоксигенные дифтерийные бактерии превращаться в токсигенные в естественных условиях (в ор­ганизме человека), подобно тому, как это происходит in vitro? Возможность подоб­ного превращения нетоксигенных культур коринебактерий в токсигенные с помощью фаговой конверсии была показана в опытах на морских свинках, куриных эмбрио­нах и белых мышах. Однако происходит ли это в ходе естественного эпидемическо­го процесса (и если происходит, то как часто), пока установить не удалось.

В связи с тем, что дифтерийный токсин в организме больных оказывает избира­тельное и специфическое воздействие на определенные системы (поражаются в ос­новном симпатико-адреналовая система, сердце, сосуды и периферические нервы), то очевидно, он не только угнетает биосинтез белка в клетках, но и вызывает другие нарушения их метаболизма.

 

Особенности патогенеза и клиники. К дифтерии восприимчивы люди любого возраста. Возбудитель может проникнуть в организм человека через слизистые обо­лочки различных органов или через поврежденную кожу. В зависимости от локали­зации процесса различают дифтерию зева, носа, гортани, уха, глаза, половых органов и кожи. Возможны смешанные формы, например дифтерия зева и кожи и т. п. Инку­бационный период — 2—10 дней. При клинически выраженной форме дифтерии в месте локализации возбудителя развивается характерное фибринозное воспаление слизистой оболочки. Токсин, вырабатываемый возбудителем, сначала поражает эпителиальные клетки, а затем близлежащие кровеносные сосуды, повышая их проницаемость. В выходящем экссудате содержится фибриноген, свертывание кото­рого приводит к образованию на поверхности слизистой оболочки серовато-белого Цвета пленчатых налетов, которые плотно спаяны с подлежащей тканью и при отры­ве От нее вызывают кровотечение. Следствием поражения кровеносных сосудов мо­жет быть развитие местного отека. Особенно опасной является дифтерия зева, так как она может стать причиной дифтерийного крупа вследствие отека слизистой обо­лочки гортани и голосовых связок, от которого раньше погибало в результате ас- фиксии 50—60 % больных дифтерией детей. Дифтерийный токсин, поступая в кровь, вызывает общую глубокую интоксикацию. Он поражает преимущественно сердечно-сосудистую, симпатико-адреналовую системы и периферические нервы, аким образом, клиника дифтерии складывается из сочетания местных симптомов, зависящих от локализации входных ворот, и общих симптомов, обусловленных от­равлением токсином и проявляющихся в виде адинамии, вялости, бледности кож­ных покровов, понижения кровяного давления, миокардита, паралича перифериче­ских нервов и других нарушений. Дифтерия у привитых детей, если и наблюдается, протекает, как правило, в легкой форме и без осложнений. Летальность в период до применения серотерапии и антибиотиков составляла 50—60 %, ныне — 3—6 %.

 

Специфическая профилактика. Основным методом борьбы с дифтерией является массовая плановая вакцинация населения. С этой целью используют раз­личные варианты вакцин, в том числе комбинированные, т. е. направленные на од­новременное создание иммунитета против нескольких возбудителей. Наибольшее распространение в России получила вакцина АКДС. Она представляет собой ад­сорбированную на гидроокиси алюминия взвесь коклюшных бактерий, убитых формалином или мертиолятом (20 млрд в 1 мл), и содержит дифтерийный анаток­син в дозе 30 флоккулирующих единиц и 10 единиц связывания столбнячного ана­токсина в 1 мл. Вакцинируют детей с 3-месячного возраста, а затем проводят ре­вакцинации: первую через 1,5—2 года, последующие в возрасте 9 и 16 лет, а далее через каждые 10 лет.

 

 

Возбудитель дифтерии, характеристика его свойств. Дифтерийный токсин, его структура и механизм действия на организм человека. Методы определения токсигенности дифтерийных бактерий. Проблема бактерионосительства. Специфическая профилактика дифтерии.

Возбудитель дифтерии — Corynebacterium diphtheriae — был обнаружен впервые в 1883 г. Э. Клебсом в срезах из пленки, получен в чистой культуре в 1884 г. Ф. Леф- флером. В 1888 г. Э. Ру и А. Иерсен обнаружили его способность продуцировать эк­зотоксин, играющий главную роль в этиологии и патогенезе дифтерии. Получение в 1892 г. антитоксической сыворотки Э. Берингом и использование ее с 1894 г. для лечения дифтерии позволило значительно снизить летальность. Успешное наступле­ние на эту болезнь началось после 1923 г. в связи с разработкой Г. Районом метода получения дифтерийного анатоксина.

Возбудитель дифтерии относится к роду Corynebacterium (класс Actinobacteria). В морфологическом отношении характеризуется тем, что клетки булавовидно утол­щены на концах (греч. согупе — булава), образуют ветвление, особенно в старых культурах, и содержат зернистые включения.

С. diphtheriae — прямые или слегка изогнутые неподвижные палочки длиной 1,0-8,0 мкм и диаметром 0,3-0,8 мкм, спор и капсул не образуют. Очень часто они имеют вздутия на одном или обоих концах, часто содержат метахроматические гра­нулы — зерна волютина (полиметафосфаты), которые при окрашивании метилено- вым синим приобретают голубовато-пурпурный цвет. Для их обнаружения предло­жен особый метод окрашивания по Нейссеру. При этом палочки окрашиваются в со­ломенно-желтый, а зерна волютина — в темно-коричневый цвет, и располагаются обычно по полюсам. С. diphtheriae хорошо окрашивает ся анилиновыми красителями, грамположительна, но в старых культурах нередко обесцвечивается и имеет отрицательную окраску по Граму. Для нее характерен вы­раженный полиморфизм, особенно в старых культурах и под влиянием антибиоти­ков (см. рис. 102.1). Содержание Г + Ц в ДНК около 60 мол %.

Дифтерийная палочка является аэробом или факультативным анаэробом, темпе­ратурный оптимум для роста 35—37 °С (границы роста 15—40 °С), оптимальная рН 7,6—7,8. К питательным средам не очень требовательна, но лучше растет на сре­дах, содержащих сыворотку или кровь. Избирательными для дифтерийных бакте­рий являются свернутые сывороточные среды Ру или Леффлера, рост на них появ­ляется через 8—12 ч в виде выпуклых, величиной с булавочную головку колоний се­ровато-белого или желтовато-кремового цвета. Поверхность их гладкая или слегка зернистая, на периферии колонии несколько более прозрачные, чем в центре. Коло­нии не сливаются, вследствие чего культура приобретает вид шагреневой кожи. На бульоне рост проявляется в виде равномерного помутнения, либо бульон остается прозрачным, а на его поверхности образуется нежная пленка, которая постепенно утолщается, крошится и хлопьями оседает на дно.

Особенностью дифтерийных бактерий является их хороший рост на кровяных и сывороточных средах, содержащих такие концентрации теллурита калия, которые по­давляют рост других видов бактерий. Это связано с тем, что С. diphtheriae восстанавли­вают теллурит калия до металлического теллура, который, откладываясь в микробных клетках, придает колониям характерный темно-серый или черный цвет. Применение таких сред повышает процент высеваемости дифтерийных бактерий.

С. diphtheriae ферментируют глюкозу, мальтозу, галактозу с образованием кислоты без газа, но не ферментируют (как правило) сахарозу, имеют цистиназу, не имеют уреазы и не образуют индола. По этим признакам они отличаются от тех коринеформ- ных бактерий (дифтероидов), которые чаще других встречаются на слизистой обо­лочке глаза (С. xerosus) и носоглотки (С. pseudodiphtheriticum) и от других дифтероидов.

 

Экзотоксин синтезируется в виде неактивного предшественника - единой поли­пептидной цепи с м. м. 61 кД. Его активация осуществляется собственной бактери­альной протеазой, которая разрезает полипептид на два связанные между собой ди- сульфидными связями пептида: А (м. м. 21 кД) и В (м. м. 39 кД). Пептид В выполняет акцепторную функцию — он распознает рецептор, связывается с ним и формирует внутримембранный канал, через который проникает в клетку пептид А и реализует биологическую активность токсина. Пептид А представляет собой фермент АДФ- Рибозилтрансферазу, который обеспечивает перенос аденозиндифосфатрибозы из НАД на один из аминокислотных остатков (гистидина) белкового фактора элонга­ции EF-2. В результате модификации EF-2 утрачивает свою активность, и это приводит к подавлению синтеза белка рибосомами на стадии транслокации. Токсин синтези­руют только такие С. diphtheriae, которые несут в своей хромосоме гены умеренного конвертирующего профага. Оперон, кодирующий синтез токсина, является моноци- стронным, он состоит из 1,9 тыс. пар нуклеотидов и имеет промотор toxP и 3 участ-ка: toxS, toxA и toxB. Участок toxS кодирует 25 аминокислотных остатков сигнально­го пептида (он обеспечивает выход токсина через мембрану в периплазматическое пространство бактериальной клетки), toxA — 193 аминокислотных остатка пептида А, и toxB — 342 аминокислотных остатка пептида В токсина. Утрата клеткой профага или мутации в tox-опероне делают клетку малотоксигенной. Напротив, лизогениза- ция нетоксигенных С. diphtheriae конвертирующим фагом превращает их в токсиген- ные бактерии. Это доказано однозначно: токсигенность дифтерийных бактерий зависит от лизогенизации их конвертирующими tox-коринефагами. Коринефаги ин­тегрируются в хромосому коринебактерий с помощью механизма сайт-специфичес­кой рекомбинации, причем штаммы дифтерийных бактерий могут содержать в своих хромосомах по 2 сайта рекомбинации (attB), и коринефаги интегрируются в каждый из них с одинаковой частотой.

Для обнаружения токсигенности дифтерийных бактерий можно использовать следующие способы:

2. Биологические пробы на животных. Внутрикожное заражение морских свинок фильтратом бульонной культуры дифтерийных бактерий вызывает у них некроз в месте введения. Одна минимальная смертельная доза токсина (20—30 нг) убивает морскую свинку весом 250 г при подкожном введении на 4—5-й день. Наиболее ха­рактерным проявлением действия токсина является поражение надпочечников, они увеличены и резко гиперемированы (см. цв. вкл., рис. 102.4).

3. Заражение куриных эмбрионов. Дифтерийный токсин вызывает их гибель.

4. Заражение культур клеток. Дифтерийный токсин вызывает отчетливый цито- патический эффект.

5. Метод твердофазного иммуноферментного анализа с использованием мечен­ных пероксидазой антитоксинов.

6. Использование ДНК-зонда для непосредственного обнаружения Юх-оперона в хромосоме дифтерийных бактерий.

Однако наиболее простым и распространенным способом определения токсиген­ности дифтерийных бактерий является серологический — метод преципитации в геле. Суть его состоит в следующем. Полоску стерильной фильтровальной бумаги разме­ром 1,5 х 8 см смачивают антитоксической противодифтерийной сывороткой, со­держащей 500 АЕ в 1 мл, и наносят на поверхность питательной среды в чашке Пет­ри. Чашку подсушивают в термостате 15—20 мин. Испытз'емые культуры засевают бляшками по обе стороны от бумажки. На одну чашку засевают несколько штаммов.

 

Специфическая профилактика. Основным методом борьбы с дифтерией является массовая плановая вакцинация населения. С этой целью используют раз­личные варианты вакцин, в том числе комбинированные, т. е. направленные на од­новременное создание иммунитета против нескольких возбудителей. Наибольшее распространение в России получила вакцина АКДС. Она представляет собой ад­сорбированную на гидроокиси алюминия взвесь коклюшных бактерий, убитых формалином или мертиолятом (20 млрд в 1 мл), и содержит дифтерийный анаток­син в дозе 30 флоккулирующих единиц и 10 единиц связывания столбнячного ана­токсина в 1 мл. Вакцинируют детей с 3-месячного возраста, а затем проводят ре­вакцинации: первую через 1,5—2 года, последующие в возрасте 9 и 16 лет, а далее через каждые 10 лет.

 

3. Коринебактерии дифтерии. Патогенез болезни. Лабораторная диагностика. Имму­нитет. Специфическая профилактика и терапия. Проблема ликвидации дифтерии. 

Возбудитель дифтерии — Corynebacterium diphtheria. Возбудитель дифтерии относится к роду Corynebacterium (класс Actinobacteria). В морфологическом отношении характеризуется тем, что клетки булавовидно утол­щены на концах (греч. согупе — булава), образуют ветвление, особенно в старых культурах, и содержат зернистые включения.

С. diphtheriae — прямые или слегка изогнутые неподвижные палочки длиной 1,0-8,0 мкм и диаметром 0,3-0,8 мкм, спор и капсул не образуют. Дифтерийная палочка является аэробом или факультативным анаэробом, темпе­ратурный оптимум для роста 35—37 °С (границы роста 15—40 °С), оптимальная рН 7,6—7,8. К питательным средам не очень требовательна, но лучше растет на сре­дах, содержащих сыворотку или кровь.

Особенности патогенеза и клиники. К дифтерии восприимчивы люди любого возраста. Возбудитель может проникнуть в организм человека через слизистые обо­лочки различных органов или через поврежденную кожу. В зависимости от локали­зации процесса различают дифтерию зева, носа, гортани, уха, глаза, половых органов и кожи. Возможны смешанные формы, например дифтерия зева и кожи и т. п. Инку­бационный период — 2—10 дней. При клинически выраженной форме дифтерии в месте локализации возбудителя развивается характерное фибринозное воспаление слизистой оболочки. Токсин, вырабатываемый возбудителем, сначала поражает эпителиальные клетки, а затем близлежащие кровеносные сосуды, повышая их проницаемость. В выходящем экссудате содержится фибриноген, свертывание кото­рого приводит к образованию на поверхности слизистой оболочки серовато-белого Цвета пленчатых налетов, которые плотно спаяны с подлежащей тканью и при отры­ве От нее вызывают кровотечение. Следствием поражения кровеносных сосудов мо­жет быть развитие местного отека. Особенно опасной является дифтерия зева, так как она может стать причиной дифтерийного крупа вследствие отека слизистой обо­лочки гортани и голосовых связок, от которого раньше погибало в результате ас- фиксии 50—60 % больных дифтерией детей. Дифтерийный токсин, поступая в кровь, вызывает общую глубокую интоксикацию. Он поражает преимущественно сердечно-сосудистую, симпатико-адреналовую системы и периферические нервы, аким образом, клиника дифтерии складывается из сочетания местных симптомов, зависящих от локализации входных ворот, и общих симптомов, обусловленных от­равлением токсином и проявляющихся в виде адинамии, вялости, бледности кож­ных покровов, понижения кровяного давления, миокардита, паралича перифериче­ских нервов и других нарушений. Дифтерия у привитых детей, если и наблюдается, протекает, как правило, в легкой форме и без осложнений. Летальность в период до применения серотерапии и антибиотиков составляла 50—60 %, ныне — 3—6 %.

 

Лабораторная диагностика. Единственным методом микробиологической ди­агностики дифтерии является бактериологический, с обязательной проверкой выде­ленной культуры коринебактерий на токсигенность. Бактериологические исследова­ния на дифтерию проводят в трех случаях:

1. для диагностики дифтерии у детей и взрослых с острыми воспалительными процессами в области зева, носа, носоглотки;

2. по эпидемическим показаниям лиц, находившихся в контакте с источником возбудителя дифтерии;

3. лиц, вновь поступающих в детские дома, ясли, школы-интернаты, другие спе­циальные учреждения для детей и взрослых, с целью выявления среди них возмож­ных бактерионосителей дифтерийной палочки.

Материалом для исследования служат слизь из зева и носа, пленка с миндалин или других слизистых оболочек, являющихся местом входных ворот возбудителя. Посевы производят на теллуритовые сывороточные или кровяные среды и одновре­менно на свернутые сывороточные среды Ру (свернутая лошадиная сыворотка) или Леффлера (3 части бычьей сыворотки + 1 часть сахарного бульона), на которых рост коринебактерий появляется уже через 8—12 ч. Выделенную культуру идентифици­руют по совокупности морфологических, культуральных и биохимических свойств, по возможности используют методы серо- и фаготипирования. Во всех случаях обязательна проверка на токсигенность одним из указанных выше методов. Морфо­логические особенности коринебактерий лучше изучать, используя три метода ок­рашивания препарата-мазка: по Граму, Нейссеру и метиленовым синим (или толуи- диновым синим).

 

Постинфекционный иммунитет прочный, стойкий, фактически пожизнен­ный, повторные случаи заболевания наблюдаются редко — у 5—7 % переболевших. Иммунитет носит главным образом антитоксический характер, меньшее значение имеют антимикробные антитела.

Для оценки уровня противодифтерийного иммунитета ранее широко применя­лась проба Шика.

 

Специфическая профилактика. Основным методом борьбы с дифтерией является массовая плановая вакцинация населения. С этой целью используют раз­личные варианты вакцин, в том числе комбинированные, т. е. направленные на од­новременное создание иммунитета против нескольких возбудителей. Наибольшее распространение в России получила вакцина АКДС. Она представляет собой ад­сорбированную на гидроокиси алюминия взвесь коклюшных бактерий, убитых формалином или мертиолятом (20 млрд в 1 мл), и содержит дифтерийный анаток­син в дозе 30 флоккулирующих единиц и 10 единиц связывания столбнячного ана­токсина в 1 мл. Вакцинируют детей с 3-месячного возраста, а затем проводят ре­вакцинации: первую через 1,5—2 года, последующие в возрасте 9 и 16 лет, а далее через каждые 10 лет.

 

Лечение. Специфическим средством лечения дифтерии является применение противодифтерийной антитоксической сыворотки, содержащей не менее 2000 МЬ в 1 мл. Сыворотку вводят внутримышечно в дозах от 10 000 до 400 000 ME в зависи­мости от тяжести течения болезни. Эффективным методом лечения является приме­нение антибиотиков (пенициллины, тетрациклины, эритромицин и др.) и сульфаниламидных препаратов. С целью стимулирования выработки собственных антитокси­нов можно использовать анатоксин. Для освобождения от бактерионосительства следует использовать те антибиотики, к которым данный штамм коринебактерий высокочувствителен.

 

 

4 Возбудители коклюша и паракоклюша. Характеристика их свойств. Патогенез коклюша. Микробиологическая диагностика. Специфическая профилактика.

Коклюш — острое инфекционное заболевание преимущественно детского воз­раста, характеризующееся циклическим течением и приступообразным спазматиче­ским кашлем.

Возбудитель — Bordetella pertussis - относятся к классу Betaproteobacteria, грамотрицательны, хорошо ок­рашиваются всеми анилиновыми красителями. Иногда выявляется биполярная ок­раска за счет зерен волютина на полюсах клетки. Возбудитель коклюша имеет форму °воидной палочки (коккобактерии) размером 0,2—0,5 х 1,0—1,2 мкм. Паракоклюшная палочка имеет такую же форму, но несколько крупнее (0,6 х 2 мкм). Расположе­ны чаще поодиночке, но могут располагаться попарно. Спор не образуют, у молодых культур и у бактерий, выделенных из макроорганизма, обнаруживается капсула. Бордетеллы неподвижны, за исключением В. bronchiseptica, которая является пери- трихом. Содержание Г + Ц в ДНК составляет 61—70 мол %, Относятся к гемофиль- ным бактериям. Бордетеллы — строгие аэробы, хемоорганотрофы. Оптимальная температура роста — 35—36 °С.

Бордетеллы не ферментируют углеводов, не образуют индола, не восстанавлива­ют нитраты в нитриты (за исключением В. bronchiseptica). Паракоклюшные бакте­рии выделяют тирозиназу, образуя пигмент, окрашивающий среду и культуру в ко­ричневый цвет.

 

Патогенез и клиника. Инкубационный период при коклюше от 3 до 14 дней, чаще 5—8 дней. Возбудитель, попавший на слизистую оболочку верхних дыхательных путей, размножается в клетках цилиарного эпителия и далее бронхогенным путем распростра­няется в более низкие отделы (бронхиолы, альвеолы, мелкие бронхи). При действии эк­зотоксина эпителий слизистой оболочки некротизируется, в результате чего раздража­ются кашлевые рецепторы и создается постоянный поток сигналов в кашлевой центр продолговатого мозга, в котором формируется стойкий очаг возбуждения. Это приводит к возникновению спазматических приступов кашля. Бактериемии при коклюше не бы­вает. Вторичная бактериальная флора может приводить к осложнениям.

 

Лабораторная диагностика. Основными методами диагностики являются бак­териологический и серологический; для ускоренной диагностики, особенно на ран­ней стадии болезни, может быть использована реакция иммунофлуоресценции. Для выделения чистой культуры в качестве материала используют слизь из носоглотки или мокроту, которые высевают на КУА или среду Борде—Жангу. Посев также может быть сделан методом «кашлевых пластинок». Выросшую культуру идентифи­цируют по совокупности культуральных, биохимических и антигенных свойств. Се­рологические реакции — агглютинации, связывания комплемента, пассивной гемаг­глютинации — ставятся в основном для ретроспективной диагностики коклюша или в тех случаях, когда не выделена чистая культура. Антитела к возбудителю появля­ются не ранее 3-й нед. заболевания, диагноз подтверждается возрастанием титра антител в сыворотках, взятых с 1—2-недельным интервалом. У детей первых двух лет жизни серологические реакции часто бывают отрицательными.

 

Специфическая профилактика и лечение. Для плановой профилактики коклюша у детей используют адсорбированную коклюшно-дифтерийно-столбняч- ную вакцину (АКДС), содержащую 20 млрд убитых коклюшных бактерий в 1 мл. На этом же компоненте основана выпускаемая отдельно убитая коклюшная вакцина, применяемая в детских коллективах по эпидемиологическим показаниям. Этот ком­понент реактогенен (нейротоксическое свойство), поэтому сейчас активно изучаются бесклеточные вакцины, содержащие от 2 до 5 компонентов (коклюшный анатоксин, филаментозный гемагглютинин, пертактин и 2 агглютиногена фимбрий). Для лечения применяют антибиотики (гентамицин, ампициллин), эффективные в ка­таральном и бесполезные в судорожном периоде заболевания.

 

5. Микробиологический диагноз коклюша и паракоклюша. Специфическая профилакти­ка коклюша.

Лабораторная диагностика. Основными методами диагностики являются бак­териологический и серологический; для ускоренной диагностики, особенно на ран­ней стадии болезни, может быть использована реакция иммунофлуоресценции. Для выделения чистой культуры в качестве материала используют слизь из носоглотки или мокроту, которые высевают на КУА или среду Борде—Жангу. Посев также может быть сделан методом «кашлевых пластинок». Выросшую культуру идентифи­цируют по совокупности культуральных, биохимических и антигенных свойств. Се­рологические реакции — агглютинации, связывания комплемента, пассивной гемаг­глютинации — ставятся в основном для ретроспективной диагностики коклюша или в тех случаях, когда не выделена чистая культура. Антитела к возбудителю появля­ются не ранее 3-й нед. заболевания, диагноз подтверждается возрастанием титра антител в сыворотках, взятых с 1—2-недельным интервалом. У детей первых двух лет жизни серологические реакции часто бывают отрицательными.

 

Специфическая профилактика и лечение. Для плановой профилактики коклюша у детей используют адсорбированную коклюшно-дифтерийно-столбняч- ную вакцину (АКДС), содержащую 20 млрд убитых коклюшных бактерий в 1 мл. На этом же компоненте основана выпускаемая отдельно убитая коклюшная вакцина, применяемая в детских коллективах по эпидемиологическим показаниям. Этот ком­понент реактогенен (нейротоксическое свойство), поэтому сейчас активно изучаются бесклеточные вакцины, содержащие от 2 до 5 компонентов (коклюшный анатоксин, филаментозный гемагглютинин, пертактин и 2 агглютиногена фимбрий). Для лечения применяют антибиотики (гентамицин, ампициллин), эффективные в ка­таральном и бесполезные в судорожном периоде заболевания.

6. Микобактерии и их характеристика. Классификация микобактерий. Палочка ту­беркулеза, ее основные свойства, факторы патогенности. Бактериоскопическая диагностика туберкулеза.

Возбудитель туберкулеза — Mycobacterium tuberculosis —Морфологически характеризуются способностью образовывать нитевидные и ветвящиеся формы, особенно в старых культурах. Кроме того, они отличаются от других микроорганизмов более высокой устойчивостью к кислотам, щелочам и спирту.

 

Классификация микобактерий. 

По патогенным свойствам род Mycobacterium подразделяют на две группы:

1) па­тогенные и условно-патогенные (потенциально патогенные)

2) сапрофита. Для их ускоренной предварительной дифференциации учитывают прежде всего три при­знака: а) скорость и условия роста; б) способность к пигментообразованию; в) спо­собность синтезировать никотиновую кислоту (ниацин).

По скорости роста род Mycobacterium подразделяют на три группы:

1) Быстрорастущие — крупные видимые колонии появляются ранее 7-го дня инкубации (18 видов).

2) Медленнорастущие — крупные видимые колонии появляются после 7-ми и бо­лее дней инкубации (20 видов).

3) Микобактерии, которые требуют специальных условий для роста или не растут на искусственных питательных средах. К этой группе относятся два вида: М. leprae и М. lepraemurium.

По способности к пигментообразованию микобактерии также делят на 3 группы:

1) Фотохромогенные — образуют пигмент лимонно-желтого цвета при росте на свету.

2) Скотохромогенные — образуют пигмент оранжево-желтого цвета при инкуби­ровании в темноте.

3) Нефотохромогенные — пигмента не образуют (независимо от наличия света), иногда культуры имеют светло-желтоватую окраску.

К патогенным и потенциально патогенным относится 24 вида.

 

М. tuberculosis имеет форму тонких, стройных, коротких или длинных, прямых или искривленных палочек, длиной 1,0—4,0 мкм и диаметром 0,3—0,6 мкм; непо­движны; спор, капсул не образуют, грамположительны; обладают большим поли­морфизмом. В старых культурах наблюдаются нитевидные, ветвящиеся формы, не­редко зернистые формы (зерна Муха), как в виде свободно лежащих зерен, так в виде зерен, содержащихся внутриклеточно. В организме больных под влиянием химиопрепаратов часто образуются ультрамалые формы, способные проходить через мелкопористые бактериальные фильтры («фильтрующиеся формы»), М. tuberculosis — аэроб, оптимальная температура для роста 37 °С, оптимальная рН - в пределах 6,4—7,0, Содержание Г + Ц в ДНК — 62-70 мол % (для рода). Рост при температуре 37 °С стимулируется инкубацией в воздухе, содержащем 5—10 % С02, и добавлением к среде 0,5 % глицерина. Микобактерии туберкулеза способны синтези­ровать ниацин; каталазная активность относительно слабая и утрачивается при 68 °С.

Многие биологические свойства микобактерий объясняются высоким содержа­нием липидов, составляющих до 40 % сухого остатка клеток.

Высокое содержание липидов определяет следующие свойства туберкулезных палочек.

1)Устойчивость к кислотам, щелочам и спирту.

2)Трудная окрашиваемость красителями. Для их окрашивания применяют интенсивные методы. Например, по способу Циля—Нильсена окрашивают кон­центрированным раствором карболового фуксина при подогревании.

 

С липидами, состоящими из нейтральных жиров, восков, стеринов, фосфатидов, сульфатидов и содержащими такие жирные кислоты, как фтиоидная, миколовая, туберкулостеариновая, пальми­тиновая и др., связаны патогенные свойства туберкулезной палочки и те биологиче­ские реакции, которыми ткани отвечают на их внедрение. Главным фактором пато­генности является токсический гликолипид (корд-фактор), который располагается на поверхности и в толще клеточной стенки.

 

Для диагностики туберкулеза применяют все ме­тоды: бактериоскопический, бактериологический, серологический, биологический, аллергические пробы, ПЦР.

При бактериоскопическом исследовании исходного материала (мокрота, моча, гной, спинномозговая жидкость, испражнения) необхо­димо учитывать, что содержание в нем микобактерий может быть незначительным, выделение их эпизодическим и в нем могут быть измененные варианты возбудителя, в том числе L-формы. Поэтому для повышения вероятности обнаружения микобак­терий туберкулеза используют методы концентрирования их с помощью центрифу­гирования или флотации, а также фазово-контрастной (для обнаружения L-форм) и люминесцентной микроскопии (в качестве флуорохромов используют аурамин, аурамин-родамин, акридиновый оранжевый и др.).










Последнее изменение этой страницы: 2018-04-12; просмотров: 359.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...