Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Строение бактериальной клетки. Цитоплазматическая мембрана, ее структура и основные функции. Роль мембраны в процессах мобилизации энергии, механизм энергизации мембраны.




Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и яд­ра, называемого нуклеоидом. Имеются дополни­тельные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях спо­собны образовывать споры.

 

ЦМ содержит фосфолипиды, образующие два слоя, белки и углеводы. Молекулы фосфолипидов асимметричны: головки, несущие электрический заряд, гидрофиль­ны; хвостики — нейтральны и гидрофобны. Фосфолипиды упакованы в мембране следующим образом: их полярные гидрофильные головки обращены наружу и обра­зуют два слоя ЦМ — внутренний и внешний, а неполярные гидрофобные хвостики скрыты в толще мембраны. На электронограммах ЦМ имеет вид трехслойной струк­туры, состоящей из двух параллельных темных слоев и разделяющего их светлого слоя. Этот слой более проницаем для электронов, чем слои, состоящие из полярных концов фосфолипидов, ассоциированных с белками. Специфичность функций ЦМ во многом зависит от набора содержащихся в них белков.

Структура, состоящая из клеточной стенки и ЦМ, получила название оболочки клетки.

 

Цитоплазматическая мембрана (ЦМ) является исключительно полифункцио­нальной структурой.

1. ЦМ воспринимает всю химическую информацию, поступающую в клетку из внешней среды.

2. Она является основным осмотическим барьером, благодаря которому внутри клетки поддерживается определенное осмотическое давление.

3. ЦМ совместно с клеточной стенкой участвует в регуляции роста и клеточного деления бактерий.

4. ЦМ участвует в регуляции процессов репликации и сегрегации хромосом и плазмид (они связаны с ее рецепторами).

5. В ЦМ содержится значительное количество ферментов, в том числе системы переноса электронов (ЦМ — место генерации энергии у бактерий).

6. С ЦМ связаны жгутики и аппарат регуляции их движения.

7. ЦМ участвует в процессах транспорта (в том числе активного) питательных ве­ществ в клетку и продуктов жизнедеятельности, включая ферменты и экзотоксины, из клетки в окружающую среду. В ней содержатся белки, участвующие в облегчен­ной диффузии и активном транспорте.

8. ЦМ участвует в синтезе компонентов клеточной стенки и образовании мезосом (мезосомы возникают в результате инвагинации участка ЦМ в цитоплазму, они открыты в периплазматическое пространство).

9. ЦМ играет важную роль в компартментализации, т. е. в разделении на «отсеки» рибосом и их стабилизации.

 

Рибосомный аппарат бактериальной клетки, его функции. Структура рибосмы. Содержание рибосом в клетке. Сущность процессов транскрипции и трансляции.

Основным компонентом белоксинтезирующей системы является рибосома. Она объединяет все компоненты в единый комплекс. Рибосомы — «святая святых» клетки.

так как именно на них совершается самое удивительное таинство живой материи — биологический синтез белка. Информация, содержащаяся в геноме, расшифровыва­ется и материализуется в виде белков на рибосомах. Без них проявление жизнедея­тельности невозможно.

Вирусы и плазмиды потому и являются облигатными внутриклеточными парази­тами, что у них отсутствуют собственные рибосомы, и для реализации генетической информации (т. е. для проявления своей жизнедеятельности) они используют рибосомный аппарат клетки-хозяина.

Процесс синтеза белка складывается из двух основных этапов: транскрипции и трансляции.

Транскрипция- или пере­писывания информации с ДНК-гена на мРНК-ген. Транскрипция осуществляется с помощью ДНК-зависимой РНК-полимеразы.

Трансляция — процесс расшифровки генетического кода в мРНК и овеществле­ние его в виде полипептидной цепи, последовательность расположения аминокис­лот в которой определяется порядком расположения кодонов в данной мРНК. Трансляция, таким образом, — это процесс собственно биосинтеза белка на рибосо­мах. Он состоит из следующих основных этапов:

1. Инициации (начала) трансляции.

2. Элонгации, или удлинения полипептидной цепи (собственно трансляция).

3. Терминации (окончания) трансляции.

4. Модификации полипептидной цепи.

Каждый из этих этапов представляет собой сложный многоступенчатый процесс и находится под жестким контролем, осуществляемым прежде всего компонентами самой белоксинтезирующей системы.

 

 

Споры бактерий. Образование и структура споры, ее прорастание. Генетический контроль спорообразования.

Некоторые роды бактерий (Васilus, Сlоstridiuт, Sporosarcina) при неблагоприят­ных для их существования условиях образуют защитные формы — эндоспоры. Споры представляют собой своеобразные покоящиеся клетки; у них чрезвычайно низкая метаболическая активность, но они обладают высокой устойчивостью к высушива­нию, действию повышенной температуры и различных химических веществ. Высо­кую резистентность спор к действию указанных факторов связывают с присутствием в оболочке большого количества кальциевой соли дипиколиновой кислоты. Споры сильно преломляют свет, поэтому они хорошо заметны в неокрашенных препаратах.

В процессе спорообразования (споруляции) бактериальная клетка подвергается сложной перестройке. Вначале на одном из ее полюсов происходит конден­сация нуклеоида и отделение его за счет образования септы. Затем ЦМ начинает об­растать образовавшийся протопласт споры и возникает складка, состоящая из двух слоев ЦМ, позднее они сливаются, в результате образовавшаяся предспора оказыва­ется окруженной двойной оболочкой. На следующей стадии между двумя мембрана­ми, покрывающими предспору, формируется толстый слой кортекса (коры). Самый внутренний слой его представляет собой зародышевую стенку (из него образуется клеточная стенка прорастающей вегетативной клетки). По мере созревания споры обе ее мембраны участвуют в образовании специальных слоев споры. Таким обра­зом между обращенными друг к другу мембранами образуются зародышевая стенка, кортекс, а также расположенные снаружи от мембран наружная и внутренняя обо­лочки и экзоспорий. Сформировавшаяся эндоспора состоит из протопласта с нуклеоидом, стенки споры, кортекса, оболочки и экзоспория.

-Протопласт споры (ядро) содержит ЦМ, цитоплазму, хромосому, все компо­ненты белоксинтезирующей системы и анаэробной энергообразующей системы.

-Стенка споры непосредственно окружает внутреннюю мембрану ее и представ­лена пептидогликаном, из которого формируется клеточная стенка прорастающей клетки.

-Кортекс — самый толстый слой оболочки споры. Он состоит из пептидогликана, содержащего мало поперечных сшивок и поэтому очень чувствительного к лизоциму. Разрушение кортекса лизоцимом играет пусковую роль в процессе прорастания споры.

-Оболочка споры построена из кератиноподобного белка. Плохая проницаемость ее определяет высокую устойчивость спор к действию различных химических веществ. 

-Экзоспорий — липопротеиновая оболочка, содержащая немного углеводов. После завершения спорообразования вегетативная часть клетки отмирает, спора высвобождается и длительное время сохраняется в окружающей среде, до тех пор, пока не возникнут условия, благоприятные для ее прорастания.










Последнее изменение этой страницы: 2018-04-12; просмотров: 375.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...