Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Характеристики слухового ощущения. Звуковые измерения (субъективные)




Физические характеристики звука (объективные)

Скорость (v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т)

Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях  организма.

 

Звуковое давление. Распространение звука сопровождается изменением давления в среде

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление (ΔΡ) - это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

 

Интенсивность звука (I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука -это плотность потока энергии, переносимой звуковой волной

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ΔΡ) выражается следующей формулой:

где ρ - плотность среды; v - скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Для уха среднего человека на частоте 1 кГц порогу слышимости соответствуют следующие значения звукового давления (ΔΡ0) и интенсивности звука (I0):

ΔΡ0 = 3х10-5 Па (≈ 2х10-7 мм рт.ст.); I0 = 10-12 Вт/м2.

Значения звукового давления и интенсивности звука, при которых у человека возникают выраженные болевые ощущения, называютсяпорогом болевого ощущения.

Для уха среднего человека на частоте 1 кГц порогу болевого ощущения соответствуют следующие значения звукового давления (ΔΡm) и интенсивности звука (Im):

Уровень интенсивности (L). Отношение интенсивностей, соответствующих порогам слышимости и болевого ощущения, столь велико (Im /I0 = 1013), что на практике используют логарифмическую шкалу, вводя специальную безразмерную характеристику - уровень интенсивности.

Уровнем интенсивности называют десятичный логарифм отношения интенсивности звука к порогу слышимости

Характеристики слухового ощущения. Звуковые измерения (субъективные)

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными характеристиками звуковой волны.

Воспринимая звуки, человек различает их по высоте, громкости и тембру

Высотатона обусловлена, прежде всего, частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности звука (звук большей интенсивности воспринимается более низким).

Тембр- это характеристика звукового ощущения, которая определяется его гармоническим спектром. Тембр звука зависит от числа обертонов и от их относительных интенсивностей.

Громкость – определяет уровень слухового ощущения. Зависит от интенсивности и частоты

Единица измерения - децибел.

 

5.Аудиометрия. Порог слышимости и болевого ощущения. Спектральная характеристика порога слышимости уха

Аудиометрия - метод измерения остроты слуха. На специальном приборе (аудиометре) определяется порог слухового ощущения, или порог восприятия, на разных частотах.

 

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

 

Значения звукового давления и интенсивности звука, при которых у человека возникают выраженные болевые ощущения, называются порогом болевого ощущения.

 

6. Слуховые методы исследования.

Аускультация(с лат. – «выслушивание») – один из методов акустической диагностики. Аускультация производится с помощью прибора – стетоскопа, или фонендоскопа.

Перкуссия -метод выслушивания звучания отдельных частей тела (перкуторных звуков), которое возникает при их простукивании. По тону перкуторных звуков опытный врач может судить о состоянии и топографии внутренних органов.

Фонокардиография(ФКГ) – метод графической регистрации тонов и шумов сердца. Получаемая при этом периодическая кривая называетсяфонокардиограммой, а применяемый прибор –фонокардиографом. Громкость тонов при аускультации и их амплитуда на ФКГ существенно зависят от внутрисердечных и внесердечных факторов. Плохое состояние миокарда, разрушение клапанов сердца и ряд других причин приводят к ослаблению тонов. К ослаблению тонов приводят также эмфизема легких, избыточная подкожная клетчатка, скопление жидкости в левой плевральной полости или в полости перикарда. С другой стороны, при тонкой грудной стенке, при анемии и некоторых других причинах тоны усиливаются.

Глоттография –метод изучения голосового аппарата путем регистрации кривой, отражающей колебания голосовых связок в процессе фонации.

Вальвулография– бескровный метод исследования движений клапанов и сердечной мышцы при помощи непрерывной ультразвуковой локации.

 

7.Ультразвук. Параметры ультразвука.

 

Ультразвук представляет собой механические волны в упругих средах, частота которых более 20 кГц.

Параметры:

Частота – это число колебаний в 1 сек.

Длина волны– это расстояние, на которое распространяется волна за 1 период

Скорость волны – зависит от плотности и температуры

Интенсивность волны – определяется количеством энергии, переносимой УЗ волной за единицу времени через единицу площади, расположенной перпендикулярно распространению УЗ волны

 

 

8.Физические процессы в тканях при воздействии ультразвуком. Медицинские приложения ультразвука.

 

При воздействии ультразвуком на организм наблюдаются следующие процессы:

- микровибрации на клеточном уровне

- разрушение макромолекул

- перестройка и повреждение биологических мембран, изменение их проницаемости

- тепловое действие

- разрушение клеток и микроорганизмов

 

Ультразвук в медицинской практике находит исключительно широкое применение. Он используется в диагностике (энцефалография, кардиография, остеоденситометрия и др.), лечении (дробление камней, фонофорез, акупунктура и др.), приготовлении лекарств, очистка и стерилизации инструмента и препаратов. УЗ используется в кардиологии, хирургии, стоматологии, урологии, акушерстве, гинекологии, педиатрии, офтальмологии абдоминальной патологии и других областях медицинской практики.

 

9.Физические основы методов ультразвуковой локации и эходоплеровских исследований.

 

Эходоплерография – методика исследования скорости кровотока и движения подвижных структур организма (сердце и сосуды), основанная на применении эффекта Доплера.

 В мягкие ткани с помощью неподвижного датчика излучается УЗ-волна определённой частоты ν , после чего регистрируют эхосигналы, отражённые от подвижных элементов (главным образом, от эритроцитов крови) и имеющие вследствие эффекта Доплера частоту ν``.

Диагностическим признаком является разность Δν = ν - ν`` , которая называется доплеровским сдвигом частоты. Эта разность зависит от скорости движения эритроцитов, т.е. и скорости кровотока в целом.

 

 

10.Типы течения жидкостей. Число Рейнольдса. Физические основы клинического метода измерения давления крови.

 

Рейнольдсу удалось обнаружить безразмерное число, описывающее характер потока вязкой жидкости.

Это число, которое теперь называют числом Рейнольдса и обозначают Re, характеризует поток и равно: Re = vLρ/η

Рейнольдсу удалось выяснить, что при значении этого числа 2000–3000 поток становится полностью турбулентным, а при значении Re меньше нескольких сотен — поток полностью ламинарный (то есть не содержит завихрений). Между двумя этими значениями поток носит промежуточный характер.

 

 

11.Ньютоновские и неньютоновские жидкости. Физические особенности крови, определяющие принадлежность ее к неньютоновским жидкостям.

 

Если в движущейся жидкости ее вязкость зависит только от ее природы и температуры и не зависит от градиента скорости, то такие жидкости называют ньютоновскими. К ним относятся однородные жидкости. Плазма является практически ньютоновской жидкостью

Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при ее течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими.

Вязкость неньютоновских жидкостей увеличивается при уменьшении скорости тока жидкости.

Кровь-неньютоновская жидкость, так как она представляет собой суспензию форменных элементов (эритроциты, лейкоциты и др.) в плазме. Это значит, что из-за различных градиентов скорости, реализующихся в движущейся крови, ее вязкость в различных участках сосудистой системы может изменяться.

 

 

12.Распределение вязкости крови вдоль кровеносного русла. Диагностическое значение вязкости крови.

 

При течении по горизонтальной трубе реальной жидкости работа внешних сил расходуется на преодоление внутреннего трения. Поэтому статическое давление вдоль трубы постепенно падает. Этот эффект может быть продемонстрирован на простом опыте. Установим в разных местах горизонтальной трубы, по которой течет вязкая жидкость, манометрические трубки.

При постоянном сечении трубы давление падает пропорционально длине. При этом скорость падения давления (dP/dl) увеличивается при уменьшении сечения трубы. Это объясняется ростом гидравлического сопротивления при уменьшении радиуса.

В кровеносной системе человека на капилляры приходится до 70 % падения давления.

Вязкость крови имеет большое диагностическое значение, т.к. при одних заболеваниях вязкость крови уменьшается. А при других увеличивается.

 

13.Методы определения вязкости крови.

 

 

Совокупность методов измерения вязкости называют вискозиметрией, а приборы, используемые для этих целей, -вискозиметрами.

Вязкость крови человека в норме составляет 4 – 5 мПа*с, при патологии колеблется от 1,7 до 2,9 мПа*с.

 

Основными методами измерения вязкости крови в настоящее время являются: капиллярный, вискозиметр Гесса и ротационный.

 

Капиллярный методоснован на формуле Пуазейля и заключается в измерении времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

 

Вискозиметр Гессасостоит из двух капилляров, один из которых заполняется дистиллированной водой, а второй исследуемой жидкостью.

 

Ротационные вискозиметры состоят из двух соосных тел, например, цилиндров, между которыми находится жидкость. Один из цилиндров (ротор) вращается, а другой неподвижен. Вязкость определяют по угловой скорости ротора, создающего определенный момент силы на неподвижном цилиндре, или по моменту силы, действующему на неподвижный цилиндр, при заданной угловой скорости вращения ротора.

 

14.Гемодинамика. Гемодинамические показатели и их связь с физическими параметрами крови и кровеносных сосудов.

 

Гемодинамика — движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого). Зависит от сопротивления току крови стенок сосудов и вязкости самой крови.

Показатели:

- Давление, оно равно силе F, действующей со стороны крови на стенки сосуда площадью равной 1 м2

- Объемная скорость кровотокаQ равна количеству крови протекающей в одну секунду через любое сечение сосуда

- Линейная скорость кровотока vравна пути, проходимой частицами крови в 1 секунду

- Ударный объем кровиравен количеству крови, выбрасываемой из сердца при одном сокращении. У человека это примерно 60 мл.

 

15.При ламинарном течении жидкости по трубе радиуса R и длины L объем Q жидкости, протекающей через горизонтальную трубу за одну секунду, можно вычислить следующим образом. Выделим тонкий цилиндрический слой радиуса r и толщины dr (рис. 8.9).

Рис. 8.9.Сечение трубы с выделенным слоем жидкости

Площадь его поперечного сечения равна dS = 2πrdr. Так как выделен тонкий слой, жидкость в нем перемещается с одинаковой скоростью v. За одну секунду слой перенесет объем жидкости

Подставив сюда формулу для скорости цилиндрического слоя жидкости (8.4), получим

Это соотношение справедливо для ламинарного течения ньютоновской жидкости.

Формулу Пуазейля можно записать в виде, справедливом для труб переменного сечения. Заменим выражение (Р1 - Р2)/L на градиент давления dP/d/, тогда получим

Как видно из (8.8), при заданных внешних условиях объем жидкости, протекающей по трубе, пропорционален четвертой степени ее радиуса. Это очень сильная зависимость. Так, например, если при атеросклерозе радиус сосудов уменьшится в 2 раза, то для поддержания нормального кровотока перепад давлений нужно увеличить в 16 раз, что практически невозможно. В результате возникает кислородное голодание соответствующих тканей. Этим объясняется возникновение «грудной жабы». Облегчения можно достичь, вводя лекарственное вещество, которое расслабляет мышцы артериальных стенок и позволяет увеличить просвет сосуда и, следовательно, поток крови.

 

Поток крови, проходящей через сосуды, регулируется специальными мышцами, окружающими сосуд. При их сокращении просвет сосуда уменьшается и соответственно убывает поток крови. Таким образом, незначительным сокращением этих мышц очень точно контролируется поступление крови в ткани.

В организме путем изменения радиуса сосудов (сужения или расширения) за счет изменения объемной скорости кровотока регулируется кровоснабжение тканей, теплообмен с окружающей средой.

 

 

16.Распределение скорости кровотока и давления крови вдоль сердечнососудистой системы

Характер распределения среднего давления крови вдоль сердечно-сосудистой системы может быть оценен с помощью закона Пуазелья. Сердце выбрасывает кровь под определенным средним давлением. По мере перемещения среднее давление падает. Так как объемная скорость кровотока постоянна во всех сечениях, а гидравлические сопротивления различных участках ссс связаны неравенством Wкап >W арт >W аорт, то из уравнения Пуазейля следует, что между значениями падения давления крови на различных участках ссс соблюдается неравенство dPкап>>dPарт>>dPаорт

 

17.Пульсовая волна. Параметры пульсовых волн

 

Пульсовая волна — это распространяющаяся по аорте и артериям волна повышенного давления, вызванная выбросом крови из левого желудочка в период систолы. Распространяясь от аорты до капилляров, пульсовая волна затухает.

Скорость распространения пульсовой волны[1] в аорте является достоверным методом определения жесткости сосудов

 

 

18.Физические основы клинического метода измерения давления кровотока.

 

Рассмотрим физические основы этого метода на примере измерения давления крови в плечевой артерии. Вокруг руки между плечом и локтем накладывают манжету. При накачивании воздуха через шланг В в манжету рука сжимается. Затем через этот же шланг воздух выпускают и с помощью манометра Б измеряют дав­ление воздуха в манжете. Сначала избыточное над атмосферным давление воздуха в манжете равно нулю, манжета не сжимает руку и арте­рию. По мере накачивания воздуха в манжету последняя сдавливает плечевую артерию и прекращает ток крови Если муску­латура расслаблена, то давление воздуха внутри манжеты, состоя­щей из эластичных стенок, приблизительно равно давлению в мяг­ких тканях, соприкасающихся с манжетой.

Выпуская воздух, уменьшают давление в манжете и в мягких тканях, с которыми она соприкасается. Когда давление станет рав­ным систолическому, кровь будет способна пробиться через сдав­ленную артерию — возникает турбулентное течение

Характерные тоны и шумы, сопровождающие этот процесс, прослушивает врач при измерении давления, располагая фонендоскоп на артерии дистальнее манжеты (т. е. на большем расстоянии от сердца). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови, что заметно по резкому ослаблению прослушиваемых тонов. Давление в манжете, соответствующее восстановлению ламинарного течения в артерии, регистрируют как диастолическое.

 

19.Деформация тел. Упругая и пластичная деформация. Типы деформаций. Механическое напряжение. Закон Гука. Модуль упругости. Единицы измерения.

 

Деформация твердого тела является результатом изменения под действием внешних сил взаимного расположения частиц, из которых состоит тело, и расстояний между ним

Разнообразные деформации твердых тел могут быть сведены к пяти основным типам: растяжению, сжатию, сдвигу, изгибу и кручению

Деформации, которые исчезают после прекращения действия внешних сил, называются упругими. Упругую деформацию испытывает, например, пружина после снятия подвешенного к её концу груза

Деформации, которые не исчезают после прекращения действия внешних сил, называют пластическими. Например, пластилин, глина, воск.

 Если принять направление внешней силы, стремящейся удлинить образец, за положительное, то F > 0 при деформации растяжения и F < 0 – при сжатии. Отношение модуля внешней силы F к площади Sсечения тела называется механическим напряжениемσ:

За единицу механического напряжения в СИ принят паскаль (Па). Механическое напряжение измеряется в единицах давления.

Зависимость между ε и σ является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси абсцисс откладывается относительное удлинение ε, а по оси ординат – механическое напряжение σ

 

При малых деформациях (обычно существенно меньших 1 %) связь между σ и ε оказывается линейной (участок Oa на диаграмме). При этом при снятии напряжения деформация исчезает. Такая деформация называется упругой. Максимальное значение σ = σпр, при котором сохраняется линейная связь между σ и ε, называется пределом пропорциональности(точка a). На линейном участке выполняется закон Гука:

Коэффициент E в этом соотношении называется модулем Юнга.

При дальнейшем увеличении напряжения связь между σ и ε становится нелинейной (участок ab). Однако при снятии напряжения деформация практически полностью исчезает, т. е. восстанавливаются размеры тела. Максимальное напряжение на этом участке называется пределом упругости .

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. Характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к деформации сжатия(удлинения).

Единица измерения- Паскаль.

 

20.Графическая зависимость механического напряжения и относительной деформации. Пределы упругости и прочности.

 

Зависимость между ε и σ является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси абсцисс откладывается относительное удлинение ε, а по оси ординат – механическое напряжение σ. Типичный пример диаграммы растяжения для металлов (таких как медь или мягкое железо) представлен на рис. 3.7.2.

Рисунок 3.7.2. Типичная диаграмма растяжения для пластичного материала. Голубая полоса – область упругих деформаций

При малых деформациях (обычно существенно меньших 1 %) связь между σ и ε оказывается линейной (участок Oa на диаграмме). При этом при снятии напряжения деформация исчезает. Такая деформация называется упругой. Максимальное значение σ = σпр, при котором сохраняется линейная связь между σ и ε, называется пределом пропорциональности(точка a). На линейном участке выполняется закон Гука:

Коэффициент E в этом соотношении называется модулем Юнга.

При дальнейшем увеличении напряжения связь между σ и ε становится нелинейной (участок ab). Однако при снятии напряжения деформация практически полностью исчезает, т. е. восстанавливаются размеры тела. Максимальное напряжение на этом участке называется пределом упругости .

 

 

21.Вязкоупругие тела. Основные механические свойства костей, кожи, сосудов

Вязкоупругость –это свойство материалов быть и вязким и упругим при деформации. Вязкие материалы, такие как мед, при сопротивлении сдвигаются и натягиваются линейно во время напряжения.

Костная ткань. Кость – основной материал опорно-двигательного аппарата. Две трети массы компактной костной ткани (0,5 объема) составляет неорганический материал, минеральное вещество кости – гидроксилантит 3 Са3(РО) х Са(ОН)2. Это вещество представлено в форме микроскопических кристалликов.

Плотность костной ткани равна 2400 кг/м3, ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма. Строение кости придает ей нужные механические свойства: твердость, упругость и прочность.

Кожа. Она состоит из волокон коллагена и эластина и основной ткани – матрицы. Коллаген составляет около 75 % сухой массы, а эластин – около 4 %. Эластин растягивается очень сильно (до 200–300 %), примерно как резина. Коллаген может растягиваться до 10 %, что соответствует капроновому волокну.

Таким образом, кожа является вязкоупругим материалом с высокоэластическими свойствами, она хорошо растягивается и удлиняется.

Мышцы. В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров. Механическое поведение скелетной мышцы следующее: при быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается. При большей деформации происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2: 1, а в бедренной артерии – 1: 2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.

 

22.Строение мышц. Реологические свойства мышц.

 

Стр. 106 в методичке

 

23.Модель скользящих нитей. Уравнение Хилла.

 

Стр. 108-110 в методичке

 

24.Структура и физические свойства мембран. Строение липидных молекул.

 

Все живые клетки отделены от окружающей среды поверхностью называемой клеточной мембраной. митохондрии. Мембраны представляют собой не только статически организованные поверхности раздела, но и включают активные биохимические системы, отвечающие за такие процессы, как избирательный транспорт веществ внутрь и наружу клетки, связывание гормонов и других регуляторных молекул, протекание ферментативных реакций, передача импульсов нервной системы и т.д. Существуют различные типы мембран, отличающиеся по выполняемым функциям. Функции мембран обусловлены их строением.

Мембраны состоят из липидных и белковых молекул, относительное количество которых варьирует (от 1/5 - белок + 4/5 - липиды до 3/4 - белок + 1/4 – липиды) у разных мембран. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5-10% вещества мембраны.

Основная часть липидов в мембранах представлена фосфолипидами, гликолипидами и холестерином.

Липиды мембран имеют в структуре две различные части: неполярный гидрофобный «хвост» и полярную гидрофильную «голову». Такую двойственную природу соединений называют амфифильной. Липиды мембран образуют двухслойную структуру. Каждый слой состоит из сложных липидов, расположенных таким образом, что неполярные гидрофобные «хвосты» молекул находятся в тесном контакте друг с другом. Так же контактируют гидрофильные части молекул. Все взаимодействия имеют нековалентный характер. Два монослоя ориентируются «хвост к хвосту» так, что образующаяся структура двойного слоя имеет внутреннюю неполярную часть и две полярные поверхности. Белки мембран включены в липидный двойной слой двумя способами:

1. связаны с гидрофильной поверхностью липидного бислоя - поверхностные мембранные белки

2. погружены в гидрофобную область бислоя - интегральные мембранные белки.

Поверхностные белки своими гидрофильными радикалами аминокислот связаны нековалентными связями с гидрофильными группами липидного бислоя. Интегральные белки различаются по степени погруженности в гидрофобную часть бислоя. Они могут располагаться по обеим сторонам мембраны и либо частично погружаются в мембрану, либо прошивают мембрану насквозь. Погруженная часть интегральных белков содержит большое количество аминокислот с гидрофобными радикалами, которые обеспечивают гидрофобное взаимодействие с липидами мембран. Гидрофобные взаимодействия поддерживают определенную ориентацию белков в мембране. Гидрофильная выступающая часть белка не может переместиться в гидрофобный слой.

 

 

25.Пассивный транспорт молекул и ионов через мембраны. Разновидность пассивного транспорта через мембраны.

 

Пассивный транспорт вещества осуществляется за счет энергии, сконцентрированной в каком-либо градиенте и не связан с затратой химической энергии гидролиза АТФ.

 

Выделяют следующие виды пассивного переноса через биологические мембраны: простая диффузия, облегченная диффузия, осмос и фильтрация:

 

Простая диффузия – это самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вследствие хаотического теплового движения частиц.

 

Облегченная диффузия происходит при участии молекул-переносчиков. Её механизм состоит в том, что вещество A, которое самостоятельно плохо проникает через мембрану, может образовать комплекс с молекулами X вспомогательного вещества, которое растворено в липидах. У поверхности мембраны молекулы А образуют комплекс AX, который способен растворяться в липидах. Оказавшись в результате диффузии по другую сторону мембраны, некоторые из комплексов отщеплют молекулы A

 

Осмос – диффузия растворителя через полупроницаемую мембрану, разделяющую два раствора с разной концентрацией.

Фильтрацией называется движение жидкости через поры в мембране под действием градиента гидростатического давления

 

26.Активный транспорт ионов через мембраны. Определение ионных насосов.

 

Транспорт вещества, совершающийся с затратой энергии метаболических процессов называется активным переносом.Активный перенос и селективная проницаемость мембран приводить к аномальному распределению ионов.

Из всех АТФ-аз, имеющихся в клетке, решающее значение для транспорта ионов К+иNa+имеет АТФ-аза, активизируемая этими же ионами (Na++-АТФ-аза) и ионами магния.

Калий-натриевый насос это трансмембранный белок выкачивающий ионы натрия из клетки в обмен на ионы калия (3 иона натрия обмениваются на 2 иона калия)

 

 

27.Мембранные потенциалы. Природа ионов, участвующих в генерации мембранных потенциалов. Причины генерации мембранных потенциалов.

 

Потенциал покоя и потенциал действия являются по своей природе мембранными потенциалами, обусловленными полупроницаемыми свойствами клеточной мембраны и неравномерным распределением ионов между клеткой и средой, которое поддерживается механизмами активного переноса, локализованными в самой мембране.

 

Между внутренней и наружной поверхностями клеточной мембраны всегда существует разность электрических потенциалов. Эта разность потенциалов, измеренная в состоянии физиологического покоя клетки, называется потенциалом покоя.

 

Причиной возникновения потенциалов клеток как в покое, так и при возбуждении является неравномерное распределение ионов калия и натрия между содержимым клеток и окружающей средой. Концентрация ионов калия внутри клеток в 20 - 40 раз превышает их содержание в окружающей клетку жидкости. Напротив, концентрация натрия в межклеточной жидкости в 10 - 20 раз выше, чем внутри клеток. Такое неравномерное распределение ионов обусловлено активным переносом ионов - работой натрий-калиевого насоса.

 

 

28.Потенциал покоя. Механизмы генерации потенциала покоя.

 

Потенциа́лпоко́я — мембранный потенциал возбудимой клетки (нейрона, кардиомиоцита) в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ[1]. У нейронов и нервных волокон обычно составляет -70 мВ.

Возникает вследствие диффузии положительно заряженных ионов калия в окружающую среду из цитоплазмы клетки в процессе установления осмотического равновесия. Анионы органических кислот, нейтрализующие заряд ионов калия в цитоплазме, не могут выйти из клетки, однако ионы калия, концентрация которых в цитоплазме велика по сравнению с окружающей средой, диффундируют из цитоплазмы до тех пор, пока создаваемый ими электрический заряд не начнёт уравновешивать их градиент концентрации на клеточной мембране.

 

29.       Уравнение Нернста и Гольдмана – Ходжкина-Каца

 

 

30. Потенциа́лде́йствия — волна возбуждения, перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки (нейрона или кардиомиоцита), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к внутренней поверхности мембраны, в то время, как в покое она заряжена положительно. Потенциал действия является физиологической основой нервного импульса.

Благодаря работе «натрий-калиевого насоса» концентрация ионов натрия в цитоплазме клетки очень мала по сравнению с окружающей средой. При проведении потенциала действия открываются потенциал-зависимые натриевые каналы и положительно заряженные ионы натрия поступают в цитоплазму по градиенту концентрации, пока он не будет уравновешен положительным электрическим зарядом. Вслед за этим потенциал-зависимые каналы инактивируются и отрицательный потенциал покоявосстанавливается за счёт диффузии из клетки положительно заряженных ионов калия, концентрация которых в окружающей среде также значительно ниже внутриклеточной.

 

31.Электрическая активность органов. Зависимость электрической активности органов от их физиологического состояния.

Как было показано в главе 3, функционирование живых клеток сопровождается возникновением трансмембранных электрических потенциалов. Клетки, образуя целостный орган, формируют сложную картину его электрической активности. Она определяется как электрической активностью отдельных клеток, так и взаимодействием между ними, устройством самого органа, неоднородностью структуры этого органа, процессами регуляции в нем и целым рядом других причин. 
    Электрическая активность в большой степени отражает функциональное состояниеклеток, тканей и органов. Регистрация и анализ электрической активности позволяют проводить биофизические и медико-биологические исследования с целью изучения работы органов и проведения клинической диагностики.  Многие органы полностью или частично состоят из возбудимых клеток. Возбуждение этих клеток является причиной возникновения электрического поля в организме.

 

32.Электрография. Разновидность электрографии. Физические основы электрокардиографии (основное положение теории Эйнтховена).

Регистрация биопотенциалов тканей и органов с диагностической целью получила название электрографии. Такой общий термин употребляется сравнительно редко, более распространены конкретные названия соответствующих диагностических методов: электрокардиография (ЭКГ) – регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении, электромиография (ЭМГ) – метод регистрации биоэлектрической активности мышц, электроэнцефалография (ЭЭГ) – метод регистрации биоэлектрической активности головного мозга и др.

В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа (сердца, головного мозга), а с других, соседних тканей, в которых электрические поля этим органом создаются.

Все сердце в электрическом отношении представляется как некоторый электрический генератор в виде реального устройства и как совокупность электрических источников в проводнике, имеющем форму человеческого тела. На поверхности проводника при функционировании эквивалентного электрического генератора будет электрическое напряжение, которое в процессе сердечной деятельности возникает на 34б поверхности тела человека. Моделировать электрическую деятельность сердца вполне допустимо, если использовать дипольный эквивалентный электрический генератор. Дипольное представление о сердце лежит в основе теории отведений Эйнтховена. Согласно ей сердце есть таковой диполь с диполь-ным моментом, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла. В. Эйнтховен предложил снимать разности биопотенциалов сердца между вершинами равностороннего треугольника, которые приближенно расположены в правой и левой руке и левой ноге.

По В. Эйнтховену, сердце расположено в центре треугольника. Так как электрический момент диполя – сердца – изменяется со временем, то в отведениях будут получены временные напряжения, которые и называют электрокардиограммами. Электрокардиограмма не дает представления о пространственной ориентации. Однако для диагностических целей такая информация важна. В связи с этим применяют метод пространственного исследования электрического поля сердца, называемый вектор-кардиографией. Вектор-кардиограмма – геометрическое место точек, соответствующих концу вектора, положение которого изменяется за время сердечного цикла.

 

 

33.Полное сопротивление (импеданс) тканей организма переменному электрическому току. Формула импеданса.

Импеданс тканей организма зависит от множества физиологических условий, основным из которых является состояние кровообращения, в частности кровонаполнение сосудов.

На этом основан один из способов исследования периферического кровообращения - РЕОГРАФИЯ.

При этом в течение цикла сердечной деятельности регистрируется изменение импеданса определенного участка тканей, на границах которого накладываются электроды. При реографии применяется переменный ток частотой 20 - 30 кГц. Этим методом получают реограммы головного мозга - реоэнцефалограммы, печени, легких, магистральных сосудов и т.д.

Зависимость импеданса тканей организма от частоты переменного тока позволяет оценить жизнеспособность этих тканей, что важно знать, например, при пересадке (трансплантации) тканей и органов

В мертвой ткани мембраны клеток разрушены и ткань обладает лишь активным сопротивлением, в то время как импеданс живой ткани складывается из активного и емкостного сопротивлений. Различие в частотных зависимостях импеданса получается и у здоровой, и у больной ткани.

 

 

34.Природа омического и емкостного сопротивления тканей

1. В целом, сопротивление биологических тканей будет определяться суммой омического и емкостного сопротивления:

2. . (12)

3. Присутствие в биологических организмах структур с ёмкостным сопротивлением подтверждается также наличием сдвига фаз между током и напряжением. Для биологических систем характерна большая величина этого угла, например, на частоте 1000 Гц: кожа человека – φ = 550, мышца кролика – φ = 650, нерв лягушки – φ = 640. Это показывает, что доля емкостного сопротивления в импедансе тканей велика.

Природу активного или омического сопротивления, связанного с нагревом материала, по которому протекает ток, объясняют столкновением носителей заряда с узлами кристаллической решетки этого материала.

 

35.Дисперсия электропроводности тканей организма. Медицинское значение дисперсии электропроводности. Коэффициент Тарусова.

 

Как и в электрических цепях, импеданс биологических систем зависит от частоты переменного тока. Для живых тканей характерно уменьшение импеданса по мере повышения этой частоты. Зависимость электрического импеданса (Z) от v (частоты) получила название дисперсии импеданса. Между дисперсиями электропроводности и диэлектрической проницаемости, о которых речь шла выше, и дисперсией импеданса существует связь, но это не идентичные процессы.

Дисперсия импеданса отображает более широкий круг электромагнитных процессов в биологических системах (возможно, и индуктивные свойства). Во всяком случае она сильнее зависит от разнообразных нарушений жизнедеятельности исследуемой ткани. По кривой дисперсии импеданса удается судить об уровне обмена веществ и его отклонениях от нормы (Раевский, 1938; Тарусов, 1939). В медико-биологическихэкспериментах и клинике применяется метод изучения дисперсии Z для оценки жизнеспособности органов и тканей.

Б.Н. Тарусов предложил упрощенный вариант такого исследования. Следуя ему, измеряют всего два значения Z: на низкой (обычно vH около 102 Гц) и высокой (vH> 106 Гц) частотах, соответствующих тем частотным диапазонам, где кривая дисперсии импеданса идет более полого, чем на среднечастотном участке крутого спада. Отношение этих величин называют коэффициентом поляризации (КП).

Жизнеспособная ткань имеет Кп>1, причем значения коэффициента поляризации тем больше, чем выше уровень обмена веществ в данной ткани и чем лучше сохранена ее структурная целостность. При отмирании ткани ее Кпстремится к

Кроме Кписпользуют и так называемый коэффициент частотной дисперсии:

                                                   (56)

Метод исследования дисперсии импеданса применяют для оценки жизнеспособности тканевых трансплантатов при пересадке органов. Изучаются возможности использования его для определения зон раневого процесса в ходе хирургической обработки раны, для характеристики ишемии, отека и т. д.

 

36.Реография. Физические основы реографии

 

Реография - метод, который позволяет измерять кровенаполнение конечностей, мозга, сердца и многих других органов.

Когда некоторый объем крови протекает через сосуды любого органа в течение систолы, объем этого органа увеличивается. Такие изменения объема изучались в прошлом с помощью, так называемой, плетизмографии, которая была основана на механических измерениях. Но возможности этого метода были ограничены. Он мог применяться только для изучения кровенаполнения верхних конечностей.

Позже было обнаружено, что при изменении количества крови в сосудах органов, изменяется их электрическое сопротивление.
Изменение активного электрического сопротивления вызывает изменение полного сопротивления. По техническим причинам более удобно измерять именно изменения импеданса, чем изменения активного сопротивления постоянному току. В реографии кинетика полного сопротивления тела человека отражает частоту и объем локального кровенаполнения органов.

Для измерения изменения полного сопротивления биологического объекта, через него пропускают переменный ток высокой частоты. Оптимальная частота, применяемая в реографии - 100 – 500кГц. При частотах выше 500 кГц сглаживаются различия в удельной электропроводности между кровью и окружающими тканями. Изменения полного сопротивления являются очень небольшими, их величина составляет: 0,08Ом для голени и предплечья, 0,1Ом для плеча и ступни.

Реография применяется для изучения кинетики полного электрического сопротивления различных органов: сердца (реокардиография), мозга (реоэнцефалография), печени (реогепатография), глаза (реоофтальмография) и т.п.

 

37. Электрический ток – это упорядоченное (направленное) движение электрических зарядов. За направление электрического тока принимается направление движения положительных зарядов. Под действием электромагнитных полей в тканях возникают два вида токов: 1) токи смещения, и 2) токи проводимости.

Токи смещения связаны с поляризацией молекул и их переориентацией, т.е. с вызванной электрическим полем вращательной переориентацией диполей. Токи проводимостивозникают за счет движения в электрическом поле зарядов –в электролитах носителями тока являются ионы.

При увеличении силы тока можно вызвать такое сгибание сустава, при котором человек не сможет самостоятельно разжать руку и освободиться от проводника – источника напряжения. Минимальную силу этого тока называют порогом неотпускающего тока. Токи меньшей силы являются отпускающими.

38.Низкочастотные методы электротерапии. Физические процессы в тканях при воздействии низкочастотными токами.

 

К основным физиотерапевтическим процедурам, использующим постоянный ток, относятся гальванизация и электрофорез.

Гальванизация- лечебное воздействие на организм постоянным электрическим током невысокого напряжения и небольшой силы.

При гальванизации различных участков тела используют следующие токи:

В результате гальванизации в тканях активизируются системы регуляции локального кровотока. Происходит расширение просвета дермальных сосудов и возникает гиперемия кожных покровов. Расширение капилляров и повышение проницаемости их стенок происходит не только в месте наложения электродов, но и в глубоко расположенных тканях.В основе физиологического и лечебного действия постоянного тока леат физико-химические процессы перемещения и разделения зарядов, накопления их на мембране

Электрофорез- введение лекарственного вещества через кожу или слизистые оболочки с помощью постоянного тока.

Для этого под соответствующий электрод кладут прокладки, смоченные лекарственным препаратом. Лекарство вводят с того полюса, зарядом которого обладают его ионы. Через катод вводят анионы (йод, гепарин, бром), а через анод - катионы (Na, Ca, новокаин).

Расположение электродов на теле пациента и продолжительность процедуры определяются местом залегания ткани, на которую оказывается лечебное воздействие.

 

39.Разновидности методов высокочастотной терапии. Факторы высокочастотной терапии. Физические процессы в тканях при воздействии высокочастотными факторами

На частотах свыше 100 кГц раздражающее действие переменного тока полностью прекращается. Это связано прежде всего с тем, что на таких частотах воротные процессы ионных каналов не успевают срабатывать и внутриклеточный состав не изменяется. Основным первичным эффектом в этом случае является тепловое воздействие.(Постоянный ток, токи НЧ и ЗЧ для нагревания тканей непригодны, так как их использование при больших значениях может привести к электролизу и разрушению).

Преимуществалечебного прогревания ВЧ-токами перед обычной грелкой очевидны:

• теплота выделяется во внутренних частях организма, а не поступает через кожные покровы;

• подбором соответствующей частоты можно осуществлять избирательное воздействие на нужный вид ткани;

• количество выделяемой теплоты можно дозировать, регулируя выходную мощность генератора.










Последнее изменение этой страницы: 2018-04-12; просмотров: 519.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...