Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

МОЛЕКУЛЯРНАЯ РЕФРАКЦИЯ И ПОЛЯРИЗУЕМОСТЬ МОЛЕКУЛ




Лекция 9

РЕФРАКТОМЕТРИЯ - КАК МЕТОД ИССЛЕДОВАНИЯ РАЗЛИЧНЫХ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ СОЕДИНЕНИЙ

 

Интенсивное развитие рефрактометрии как инструментального метода химических исследований началось со второй половины Х1Х века, когда одной из центральных проблем химии стало выяснение зависимости свойств веществ от их состава и строения, а быстро растущая химическая промышленность потребовала разработки удобных и простых методов технического анализа.

Особая роль рефрактометрии в производстве оптического стекла предопределила то внимание, которое уделялось ей при создании оптической промышленности России. Одной из первых проблем Государственного оптического института было систематическое исследование свойств оптических материалов. В связи с этим тщательно изучались и усовершенствовались различные способы точных измерений показателей преломления и их термических коэффициентов. Для производственного контроля оптических стекол, измерения их дисперсии в крайних областях спектра и в пределах полос поглощения были созданы уникальные установки и разработаны оригинальные конструкции специальных приборов.

Широкому распространению рефрактометрии способствовало исключительно ценное совмещение высокой точности, технической простоты и доступности.

Показатель преломления принадлежит к числу немногих физических констант, которые можно измерить с очень высокой точностью и небольшой затратой времени, располагая лишь малым количеством вещества. Измерение показателя преломления дает возможность непосредственно установить концентрацию двухкомпонентных растворов. Для этого используются эмпирические расчетные формулы и графики. Сочетание рефрактометрических измерений с определением других физических свойств или с химической обработкой исследуемого вещества позволяет анализировать тройные и более сложные смеси и определять, таким образом, состав многих важных промышленных продуктов и биологических объектов.

Кроме самого показателя преломления, в химии используется ряд более сложных функций, к которым относят различные виды формул удельной и молекулярной рефракции. Каждая из этих величин имеет свои особенности, которые должны учитываться при ее практическом использовании. Так, рефрактометрический анализ двойных систем основывается на употреблении показателя преломления, а применение для этой цели рефракционной дисперсии или удельной рефракции практически бесполезно. В тоже время дисперсия и удельная рефракция с успехом используются в анализе сложных углеводородных смесей, где измерение одного только показателя преломления недостаточно. Показатель преломления служит важным критерием чистоты вещества, но молекулярная рефракция и дисперсия для этой цели мало пригодны. Однако для рефрактометрического определения строения органических соединений именно эти последние костанты очень удобны.

Молекулярная рефракция непосредственно связана с поляризуемостью ионов и молекул, то есть со способностью их электронных оболочек деформироваться во внешнем электрическом поле или электрическом поле других ионов и молекул. Деформируемость электронных оболочек, а, следовательно, и молекулярная рефракция являются важным критерием, характеризующим многие физические и химические свойства вещества.

У органических соединений обнаруживается закономерное изменение молекулярной рефракции и дисперсии в зависимости от состава и строения в пределах гомологических рядов. Эти закономерности позволяют использовать рефрактометрию для классификации и определения строения органических соединений.

Благодаря простоте и доступности рефрактометрические методы сохранили свое значение в химии до настоящего времени, несмотря на бурное развитие молекулярной спектроскопии, и других физических методов определения строения органических соединений. Но следует учитывать, что применение рефрактометрических методов оправдывается лишь в тех случаях, когда они дают не только наиболее простое, но и достаточно обоснованное однозначное решение поставленной задачи.

 

МОЛЕКУЛЯРНАЯ РЕФРАКЦИЯ И ПОЛЯРИЗУЕМОСТЬ МОЛЕКУЛ

 Определение и физический смысл молекулярной рефракции

 

Практически все методы исследования поляризуемости основаны на изменении характеристик света при его взаимодействии с веществом. Предельный случай - постоянное электрическое поле.

Действующее на молекулу внутреннее локальное поле F не тождественно внешнему полю E, налагаемому на диэлектрик. Для вычисления его обычно используется модель Лорентца.

Согласно этой модели

F=(e+2)*E/3,                                           (1)

где e- диэлектрическая постоянная (проницаемость).

Сумма дипольных моментов, индуцированных в каждой из N1  молекул, содержащихся в единице объема, есть поляризация вещества

P=N1*a*F=N1*a*E*(e+2)/3,                              (2)

где a - поляризуемость.

Мольная поляризация (см3/моль) описывается уравнением Клаузиуса-Моссоти

P=(e-1)/(e+2)*M/r=2.52*1024*a ,                   (3)

 в системе СИ (Ф*м2*моль-1)

P=N*a/3*e0=2.52*1037*a                              (4)

В случае переменного электрического поля, в том числе поля световой волны, проявляются различные составляющие поляризации, обусловленные сдвигом электронов и ядер атомов, в зависимости от частоты.

Для неполярных диэлектриков согласно теории Максвелла e=n2, так что уравнение (3) преобразуется в уравнение молекулярной рефракции Лорентц-Лоренца

R=(n2–1)/(n2+2)*M/r=4/3*p*N*a,                     (5)

где n - показатель преломления; r - плотность; N - число Авогадро.

Аналогичным уравнением описывается удельная рефракция

(n2 –1)/(n+2)*1/r=4/3*p*N1*a.                         (6)

Молекулярная рефракция представляет собой полярзацию одного моля вещества в электрическом поле световой волны определенной длины. Таков физический смысл молекулярной рефракции.

При экстраполяции к бесконечной длине волны получают электронную поляризацию Ре :

Pe=P¥=(n2¥-1)/(n2¥+2)*M/r=4/3*N*ae              (7)

Вычисление из молекулярной рефракции - единственный практически используемый метод нахождения средней поляризуемости a, см3. Подстановка в (7) численных значений постоянных дает

a=0.3964*1024*R¥.                                     (8)

Экспериментальное определение молекулярной рефракции включает измерения показателя преломления и плотности.

Важнейшим свойством молекулярной рефракции является ее аддитивность. Возможность априорного расчета величины рефракции по инкрементам соответствующих атомов и связей позволяет в ряде случаев безошибочно идентифицировать химическое соединение, а так же изучать по величинам отклонения эксперимента от расчета возникающие внутри - и межмолекулярные взаимодействия.

Рефракция смеси аддитивна – удельная - по весовым долям компонентов w, молекулярная - по мольным f, что позволяет вычислять рефракции веществ из данных для растворов. Если обозначить параметры растворителя индексом 1, растворенного вещества – 2, раствора 1,2 , то

R2=1/f2*[(n1,22-1)/(n1,22+2)*(M2*f2+M1*(1-f 2))/r1,2-R1*(1-f2)] (9)

В выражении концентрации в молях на 1 литр (С) имеем

R2=(n12-1)/(n12+2)*(M2/r1-1000/C*(r1,2-r1)/r1)+1000/C*((n1,22-1)/(n1,22+2)-(n12-1)*(n12+2)) (10)

Наилучшие результаты дает графическая или аналитическая экстраполяция к бесконечному разбавлению рефракции или показателей преломления и плотностей растворов. Если концентрационные зависимости последних выражены уравнениями

r1,2=r1*(1+b*w1),

n1,2=n1*(1+g*w2),

то удельная рефракция

¥R2=R1(1-b)+3n12g/r1(n12+2)2.                        (11)

При проведении измерений в растворах необходимо выполнение некоторых условий эксперимента, а именно, использование максимально возможных концентраций анализируемого вещества.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 769.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...