Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Устройство и основные физические процессы.




Слайд 1,2

Лекция 6.

Оптоэлектронные приборы

 

Оптоэлектронными называют приборы, которые чувствительные к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение.

Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм, что соответствует частотам примерно от 0,5·1012 Гц до 5·1017 Гц. Видимому диапазону соответствуют длины волн от 0,38 мкм до 0,78 мкм (частота около 1015 Гц).

На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары).

Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор.

 

 

Слайд 3

Основные достоинства оптоэлектронных приборов:

· высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот;

· полная гальваническая развязка источника и приемника излучения;

· отсутствие влияния приемника излучения на источник (однонаправленность потока информации);

· невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность).

Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом.

Рассмотрим устройство, характеристики, параметры и систему обозначений излучающих диодов.

 

Слайд 4

Излучающий диод (светодиод)

Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом.

Рассмотрим устройство, характеристики, параметры и систему обозначений излучающих диодов.

Устройство. Схематическое изображение структуры излучающего диода представлено на рис. 6.1,а, а его условное графическое обозначение – на рис. 6.1,б.

Рисунок 6.1 - Схематическое изображение структуры излучающего диода(а) и его условное графическое обозначение (б)

Излучение возникает при протекании прямого тока диода в результате рекомбинации электронов и дырок в области p-n-перехода и в областях, примыкающих к указанной области. При рекомбинации излучаются фотоны.

 

Слайд 5

Характеристики и параметры.

Для излучающих диодов, работающих в видимом диапазоне (длина волн от 0,38 до 0,78 мкм, частота около 1015 Гц), широко используются следующие характеристики:

- зависимость яркости излучения L от тока диода i (яркостная характеристика);

- зависимость силы света IV от тока диода i.

Для излучающих диодов, работающих не в видимом диапазоне, используют характеристики, отражающие зависимость мощности излучения Р от тока диода i.

 

 

Слайд 6

 

Яркостная характеристика для светоизлучающего диода типа АЛ102А представлена на рис. 6.2. Цвет свечения этого диода – красный. (В Международной системе единиц (СИ) измеряется в канделах на м². Ранее эта единица измерения называлась нит (1нт=1кд/1м²).)

Рисунок 6.2- Яркостная характеристика для светоизлучающего диода типа АЛ102А

                                                                                                                                                                                                                                                                                       Слайд 7

График зависимости силы света от тока для светоизлучающего диода типа АЛ316А представлен на рис. 6.3. Цвет свечения – красный.

Рисунок 6.3- График зависимости силы света от тока для светоизлучающего диода типа АЛ316А

 

Слайд 8

Зона возможных положений графика зависимости мощности излучения от тока для излучающего диода типа АЛ119А, работающего в инфракрасном диапазоне (длина волны 0,93…0,96 мкм), представлена на рис. 6.4.

Рисунок 6.4- Зона возможных положений графика зависимости мощности излучения от тока для излучающего диода типа АЛ119А

Слайд 9

Приведем для диода АЛ119А его некоторые параметры:

· время нарастания импульса излучения – не более 1000 нс;

· время спада импульса излучения – не более 1500 нс;

· постоянное прямое напряжение при i=300 мА – не более 3 В;

· постоянный максимально допустимый прямой ток при t <+85°C – 200 мА;

· температура окружающей среды –60 …+85°С.

Для информации о возможных значениях коэффициента полезного действия отметим, что излучающие диоды типа ЗЛ115А, АЛ115А, работающие в инфракрасном диапазоне (длина волны 0,95 мкм, ширина спектра не более 0,05 мкм), имеют коэффициент полезного действия не менее 10 %.

Слайд 10

Система обозначений. Используемая система обозначений светоизлучающих диодов предполагает применение двух или трех букв и трех цифр, например АЛ316 или АЛ331.

Первая буква указывает на материал,

вторая (или вторая и третья) – на конструктивное исполнение:

Л – единичный светодиод,

ЛС – ряд или матрица светодиодов.

    Последующие цифры (а иногда буквы) обозначают номер разработки.

Слайд 11

Фоторезистор

Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Схематическое изображение структуры фоторезистора приведено на рис. 6.5,а, а его условное графическое изображение – на рис. 6.5,б.

Рисунок 6.5 - Схематическое изображение структуры фоторезистора (а), а его условное графическое изображение(б)

Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости).

 

 

Слайд 12

Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика (рис. 6.6).

Рисунок 6.6. - Люкс-амперная характеристика фоторезистора типа ФСК-Г7, который работает в видимой части спектра.

Слайд 13

Часто используют следующие параметры фоторезисторов:

· номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм);

· интегральную чувствительность (чувствительность, определяемая при освещении фоторезистора светом сложного спектрального состава).

Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением:

где iф – так называемый фототок (разность между током при освещении и током при отсутствии освещения);

Ф – световой поток.

Для фоторезистора ФСК-Г7 S=0,7 А/лм.

Слайд 14

Фотодиод

Устройство и основные физические процессы.

Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.

                Рисунок 6.7 - Структура (а) и обозначение (б) фотодиода

 

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).

 

Слайд 15

Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

льт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.

Рис. 6.8. Вольт-амперные характеристики фотодиода

Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

 На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.

Режим фотопреобразователя соответствует ВАХ в третьем квадранте.

 

Слайд 16

 

В режиме фотопреобразователя  фотодиод потребляет энергию  (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).

 

 

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).

 

 

Слайд 17(1)

Фототранзисторы

Фототранзистор относится к полупроводниковым фотоэлектрическим приборам с внутренним усилением фототока. Структура фототранзистора эквивалентна структуре обычного биполярного p-n-p транзистора, включенного в схеме с общим эмиттером. В отличие от биполярного транзистора, у фототранзистора отсутствует электрический контакт к базе, а управление током базы осуществляется путем изменения ее освещенности. По этой причине конструктивно фототранзистор имеет только два вывода – эмиттер и коллектор.

На рисунке 6.11  показана схема включения фототранзистора и зонная диаграмма в активном режиме работы.

а) схема фототранзистора со структуройp-n-p; б) зонная диаграмма фототранзистора в активном режиме работы

 

Управление током фототранзистора осуществляется путем освещения базовой области. Рассмотрим для примера p-n-p фототранзистор. При попадании светового потока на n-область базы в ней генерируются неравновесные электроны и дырки. Дырки будут являться неосновными носителями, увеличение их концентрации приведет к росту дрейфовой компоненты тока из базы в коллектор. Величина первичного «затравочного» фототока будет выражаться такими же соотношениями, как и фототок диода на основе p-n перехода. Отличие только в том, что неравновесные носители, участвующие в фототоке в фототранзисторе, собираются с области базы, ширина которой W меньше, чем диффузионная длина Lp. Поэтому плотность первичного фототока будет равна:

 

 

Слайд 17(2)

Вследствие того, что неравновесные дырки уходят из базы в коллектор, база заряжена отрицательно относительно эмиттера, что эквивалентно прямому смещению эмиттерного перехода фототранзистора. При прямом смещении эмиттерного p-n перехода появляется инжекционная компонента тока из эмиттера в базу. При коэффициенте передачи эмиттерного тока α в базе рекомбинируют (1-α) инжектированных носителей или в β раз меньше, чем число инжектированных носителей. В условиях стационарного тока число прорекомбинировавших носителей в базе должно быть равно их числу, ушедшему с первоначальным фототоком. Поэтому инжекционный ток должен быть в β раз больше, чем первичный фототок. Ток коллектора IК будет состоять из трех компонент: первичного фототокаIф, инжекционногоβIф и тепловогоIК0 тока.

 

Используя выражение для коэффициента усиления β базового тока через конструктивно-технологические параметры биполярного транзистора, получаем:

 

Величина первичного фототока IФ выражается через параметры светового потока и характеристики полупроводникового материала стандартным образом

 

Слайд 18

 

На рисунке 6.12 приведена вольт-ампернаяхарактеристика фототранзистора при различных уровнях освещенности.

 

 

Для фототранзисторов, благодаря большому коэффициенту внутреннего усиления, характерна высокая интегральная чувствительность (отношение фототока к падающему световому потоку), спектральная чувствительность определяется свойствами полупроводникового материала.

 

Слайд 19

Фототиристоры

Фототиристором называют тиристор, напряжение включения которого уменьшается с увеличением освещенности.

Отличительной особенностью структуры и конструкции фототиристора является возможность освещения одной из базовых областей (рисунок 6.13).

Переключение фототиристора из закрытого в открытое состояние происходит, как у обычного тиристора, при увеличении суммарного коэффициента передачи по току тиристорной структуры до единицы. В фототиристоре увеличение этого параметра может происходить в результате увеличения тока через тиристорную структуру при поглощении квантов света в базовых областях, т.е. из-за генерации носителей заряда в базовых областях при их освещении. С этой целью в корпусе прибора предусматривается специальное окно.

Фототиристоры нашли широкое применение в высоковольтных установках преобразования электрической энергии, поскольку они позволяют надежно решать задачу развязки по напряжению выходной цепи прибора и системы управления.

 

 

 

Слайд 20(1)

Оптрон (оптопара)

Оптрон – полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенных в одном корпусе и связанные между собой оптически, электрически или  одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор.

В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 107…108 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что обусловливает широкую применимость резистивных оптопар в аналоговых устройствах. Недостатком резисторных оптронов является низкое быстродействие – 0,01…1 с.

В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей – тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5…50 мкс.

Рассмотрим подробнее оптопару светодиод-фотодиод (рис. 6.14,а). Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод – в прямом (режим фотогенератора) или обратном направлении (режим фотопреобразователя). Направления токов и напряжений диодов оптопары приведены на рис. 6.14,б.

Рисунок 6.11 - Схема оптопары (а) и направление токов и напряжений в ней (б)

 

          Слайд 20(2)

 

Зависимость тока iвых от тока iвх при uвых=0 для оптопары АОД107А (рис. 6.12). Указанная оптопара предназначена для работы как в фотогенераторном, так и в фотопреобразовательном режиме.

Рис. 6.12. Передаточная характеристика оптопары АОД107А

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 275.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...