Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Полная вольт-амперная характеристика перехода




Полная вольт-амперная характеристика полупроводникового перехода приведена на рис. 6 От характеристики идеального диода она отличается наличием некоторого падения напряжения на приборе при пропускании прямого тока и обратного тока в случае приложения обратного напряжения.

Рис. 6 Идеализированная вольт-амперная характеристика диода

Как известно, прямой ток перехода создается основными, а обратный — неосновными носителями заряда. Концентрация основных носителей заряда на несколько порядков превышает концентрацию неосновных носителей. Этим и обусловливаются вентильные свойства р-п-перехода.

Уравнение вольт-амперной характеристики диода:

                          , (2.6)

где Is = sJдр —ток насыщения (тепловой ток), создаваемый неосновными носителями заряда;

 φТ — тепловой потенциал.

При U = 0 согласно соотношению (2.6) Ia = 0. В случае приложения прямого напряжения (U = Ua > 0) в (2.6) единицей можно пренебречь и зависимость Ia(Ua) будет иметь экспоненциальный характер. В случае обратного напряжения (U = Ub < 0) можно не учитывать достаточно малую величину и тогда Ia = Ib = –Is

Слайд 17

Учет дополнительных факторов, влияющих на вольт-амперную характеристику перехода

В проведенном анализе, позволяющем главным образом объяснить принцип действия p-n-перехода, не учитывались некоторые факторы, отражающиеся на его реальной вольт-амперной характеристике.

На прямую ветвь вольт-амперной характеристики перехода оказывает влияние объемное сопротивление слоев p-n-структуры (особенно при больших токах), увеличивающее падение напряжения ΔUа на диоде. В кремниевых диодах это влияние более значительно, чем в германиевых, так как из-за меньшей подвижности носителей заряда удельное сопротивление кремния выше. С учетом падения напряжения в слоях в кремниевых диодах при протекании прямого тока ΔUа = 0,8÷1,2 В, а в германиевых ΔUа = 0,3÷0,6 В.

На обратную ветвь вольт-амперной характеристики перехода оказывают влияние ток утечки через поверхность p-n-перехода и генерация носителей заряда, которая является причиной возможного пробоя p-n-перехода. Оба фактора приводят к тому, что обратная ветвь вольт-амперной характеристики диода принимает вид, показанный на рис. 2.5.

Рис. 7 Обратная ветвь вольт-амперной характеристики реальных переходов

 

Ток утечки связан линейной зависимостью с напряжением Ub. Он создается различными загрязнениями на внешней поверхности p-n-структуры, что повышает поверхностную электрическую проводимость p-n-перехода и обратный ток через переход. Эта составляющая обратного тока обусловливает появление наклонного участка 1—2 на характеристике диода (рис. 7).

Влияние генерации носителей заряда в p-n-переходе обычно сказывается при повышенных обратных напряжениях. Оно проявляется вначале в нарушении линейной зависимости изменения обратного тока от напряжения Ub (участок 2—3), а затем в резком возрастании обратного тока (участок 3—5), характеризующем пробой p-n-перехода.

Слайд 18.1

Пробой перехода

В зависимости от причин, вызывающих появление дополнительных носителей заряда в p-n-переходе, различают электрический пробой и тепловой пробой. Электрический пробой, в свою очередь, может быть лавинным или туннельным. Рассмотрим эти виды пробоя.

Лавинный пробой обусловлен лавинным размножением носителей в p-n-переходе в результате ударной ионизации атомов быстрыми носителями заряда. Он происходит следующим образом. Неосновные носители заряда, поступающие в p-n-переход при действии обратного напряжения, ускоряются полем и при движении в нем сталкиваются с атомами кристаллической решетки. При соответствующей напряженности электрического поля носители заряда приобретают энергию, достаточную для отрыва валентных электронов. При этом образуются дополнительные пары носителей заряда — электроны и дырки, которые, ускоряясь полем, при столкновении с атомами также создают дополнительные носители заряда.

Описанный процесс носит лавинный характер.

Лавинный пробой возникает в широких p-n-переходах, где при движении под действием электрического поля носители заряда, встречаясь с большим количеством атомов кристалла, в промежутке между столкновениями приобретают достаточную энергию для их ионизации.

В основе туннельного пробоя лежит непосредственный отрыв валентных электронов от атомов кристаллической решетки под действием сильного электрического поля. Образующиеся при этом дополнительные носители заряда (электроны и дырки) увеличивают обратный ток через p-n-переход. Туннельный пробой развивается в узких p-n-переходах, где при сравнительно небольшом обратном напряжении имеется высокая напряженность поля.

Лавинный и туннельный пробои сопровождаются появлением почти вертикального участка 3—4 на обратной ветви вольт-амперной характеристики (рис. 2.5). Причина этого заключается в том, что небольшое повышение напряжения на p-n-переходе вызывает более интенсивную генерацию в нем носителей заряда при лавинном или туннельном пробое.

Оба эти вида пробоя являются обратимыми процессами. Это означает, что они не приводят к повреждению перехода и при снижении напряжения его свойства сохраняются.

Слайд 18.2

Тепловой пробой возникает за счет интенсивной термогенерации носителей в p-n-переходе при недопустимом повышении температуры. Процесс развивается лавинообразно и ввиду неоднородности p-n-перехода обычно носит локальный характер. Лавинообразное развитие теплового пробоя обусловливается тем, что увеличение числа носителей заряда за счет повышения температуры вызывает увеличение обратного тока и, следовательно, еще больший разогрев участка p-n-перехода. Процесс заканчивается расплавлением этого участка и выходом прибора из строя.

Тепловой пробой может произойти в результате перегрева отдельного участка p-n-перехода вследствие протекания большого обратного тока при лавинном или туннельном пробое (участок 4—5 на рис. 2.5). Тепловой пробой здесь является следствием недопустимого повышения обратного напряжения (перенапряжения). Велика вероятность наступления теплового пробоя при общем перегреве p-n-перехода ввиду ухудшения, например, условий теплоотвода.

В этом случае он может произойти при меньшем напряжении Ub, минуя стадии лавинного или туннельного пробоя.

Возможность теплового пробоя p-n-перехода учитывается указанием в паспорте на прибор допустимого обратного напряжения Ub доп и температурного диапазона работы. Величина допустимого обратного напряжения устанавливается с учетом исключения возможности электрического пробоя и составляет (0,5÷0,8) Uпр.

 

 

Слайд 19

Емкости p-n-перехода

Емкость p-n-перехода равна сумме так называемых барьерной и диффузионной емкостей.

Барьерная (или зарядная) емкость характеризуется сосредоточением по обе стороны границы раздела p- и n-слоев объемных зарядов, создаваемых ионами примесей. Физическим аналогом; барьерной емкости приближенно может служить емкость плоского конденсатора.

Наличие барьерной емкости проявляется протеканием тока через p-n-переход вследствие изменения объемных зарядов (а следовательно, ширины p-n-перехода) при изменении напряжения на переходе и определяется соотношением Сб = dQ / dU. Зарядная емкость возрастает с уменьшением толщины p-n-перехода, т.е. при снижении обратного напряжения. Она выше при прямых напряжениях, чем при обратных. Величина барьерной емкости зависит от площади p-n-перехода и может составлять десятки и сотни пикофарад. Зависимость барьерной емкости p-n-перехода от обратного напряжения используется в варикапах (параметрических диодах), применяемых в качестве конденсаторов переменной емкости, управляемых напряженном.

В отличие от барьерной емкости, определяемой шириной области объемного заряда p-n-перехода, диффузионная емкость обусловливается изменением суммарных зарядов неравновесных электронов и дырок соответственно слева и справа от p-n-перехода в результате изменения напряжения на нем. Так как эти заряды создаются за счет диффузии (инжекции) носителей через p-n-переход, диффузионную емкость следует учитывать при прямом напряжении смещения. В несимметричных p-n-переходах, для которых pp >> nn, диффузионная емкость определяется преимущественно суммарным зарядом неравновесных дырок в n-слое, величина которого изменяется при изменении прямого напряжения.

Величина диффузионной емкости зависит от протекающего через p-n-переход прямого тока и может составлять сотни и тысячи пикофарад, т.е. она существенно больше барьерной емкости. Таким образом, при прямых напряжениях смещения емкость p-n-перехода определяется в основном диффузионной емкостью, а при обратных напряжениях, когда диффузионная емкость равна нулю, — барьерной емкостью.

 

Слайд 20

Спасибо за внимание!










Последнее изменение этой страницы: 2018-04-12; просмотров: 197.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...