Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Описание экспериментальной установки




Лабораторная работа № 2

ОПРЕДЕЛЕНИЕ СКОРОСТИ ПУЛИ

 

Цель:Изучение законов сохранения энергии и импульса.

Задача: определить скорости пули с помощью крутильного баллистического маятника ФПМ-09.

Оборудование: крутильный баллистический маятник ФПМ-09

Краткая теория

Прямолинейное движение. - численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) материальной точки.

Закон сохранения импульса = const - импульс замкнутой системы не изменяется с течением времени.

Движение по окружности. - физическая величина, определяемая данным векторным произведением, называется моментом импульса (количества движения) материальной точки А относительно неподвижной оси О (см. рис.1), где  -- радиус вектор, проведенный из точки О в точку A; =m - импульс материальной точки;  -псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от  к .

 


Модуль вектора момента импульса:

L = p r sinα = mV r sinα = pl,

где α- угол между векторами  и ;. l - плечо вектора  относительно точки О.

Закон сохранения момента импульса: = const . Момент импульса замкнутой системы относительно ее центра масс не изменяется с течением времени.

 

Закон сохранения энергии.В системе тел, между которыми действуют только консервативные силы, полная механическая энергия системы с течением времени остается постоянной

Е = Т+ Р= const,

где Е - полная механическая энергия, Т - кинетическая энергия, Р -потенциальная энергия.

 

Кинетическая энергия механической системы - это энергия механического движения системы. Кинетическая энергия для

поступательного движения : ,   вращательного движения

где J - момент инерции, ω - циклическая частота).

Потенциальная энергия системы тел - это энергия взаимодействия между телами системы (она зависит от взаимного расположения тел ивида взаимодействия между телами).      Потенциальная энергия

упругодеформированного тела: ;     при деформации кручения

где k – коэффициент жесткости (модуль кручения),  х- деформация, α- угол кручения.

Абсолютно упругий удар - столкновение двух или нескольких тел, в результате которого во взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара вновь превращается в кинетическую энергию.

Абсолютно неупругий удар - столкновение двух или нескольких тел, в результате которого тела объединяются, двигаясь дальше как единое целое, часть кинетической энергии преобразуется во внутреннюю энергию.

Крутильный маятник - это система, совершающая крутильные (поворотные) колебания, см. рис.2.

Крутильные колебания возбуждаются за счет действия упругих сил, возникающих при деформации кручения проволоки (нити), к которой прикреплено колеблющееся тело. Период колебаний T при малых углах отклонения крутильного маятника определяется моментом инерции и   модулем кручения проволоки по формуле

 ,  где  J - момент инерции;

k – модуль кручения проволоки.

 

Теорема Гюйгенса-Штейнера: Момент инерции тела относительно любой оси АВ вращения  J равен сумме момента   его инерции Jo относительно параллельной оси 00 , проходящей через центр масс тела и произведению массы тела на квадрат расстояния d между осями 00 и АВ (см. рис. 3).

J = J0+ md2

 


Вывод рабочей формулы

При выполнении работы необходимо, чтобы пуля при ударе залипала в мишени. Будем считать такой удар абсолютно неупругим и также будем считать, что силы трения в маятнике равны нулю.

На основании закона сохранения момента импульса для неупругого удара запишем:

mV l = (J1 + ml2)ω,                                      (1)

 где mV  - момент импульса пули до удара  (m — масса пули, V - скорость пули),

J1 + ml2 – момент инерции системы маятник-пуля (J1 - момент инерции собственно маятника, l - расстояние от оси вращения маятника до центра удара пули, ml2- момент инерции пули относительно оси маятника),  ω - угловая скорость маятника.

На основании закона сохранения энергии для вращательного движения имеем:

                    ½ (J1 +  m l22= ½ kα2                         (2)

k -модуль кручения проволоки, α - максимальный угол поворота маятника.

Используя (1) и (2) выразим скорость пули: левую и правую часть формулы (1) возьмем в квадрат

(m V l)2 = (J1 + ml2)2 ω2        →

подставим данное выражение в формулу (2):

Так как момент инерции пули намного меньше момента инерции маятника   ml2 « J1 ,

                                             (3)

Исключим из формулы (3) модуль кручения k и выразим момент инерции маятника J1 через величины, которые можно измерить .Период колебаний при малых углах отклонения крутильного маятника

Меняя положение грузов на стержне маятника, изменим момент инерции маятника и запишем:

-  для первого положения грузов на стержне маятника момент инерции – J1

период колебаний

-  для второго положения грузов на стержне маятника момент инерции - J2

период колебаний.

Тогда имеем ; J1 − J2 =ΔJ → J2 = J1 ΔJ; ;

Выразим  k  из формулы периода для первого положения грузов ;

Подставим два последних выражения в формулу (3):

.

Определим величину ΔJ на основании теоремы Штейнера:

J1 = J0 + 2MR12;  J2 = J0 + 2MR22,

Где J0 - момент инерции маятника, когда центр тяжестей грузов совпадает с осью вращения маятника; J1, J2 - момент инерции маятника при положении грузов на расстоянии R1, R2   от оси вращения.

Разность между моментами инерции ΔJ = 2M(R12 - R22), тогда окончательное уравнение для скорости

T = t/n;  t − показания миллисекундомера,  n - число колебаний.

 (рабочая формула),

где α -  максимальный угол поворота маятника в момент удара для первого положения грузов на стержне маятника в радианной мере ( по круговой шкале этот угол отмеряют в градусной мере  φ= к,  к – число делений по шкале, тогда α=(π/180)* φ

М - масса одного груза (173 г); m - масса пули; l - расстояние от оси вращения до центра удара пули; R1, R2 - расстояние от центров масс грузов до оси вращения маятника при первом и втором положении грузов на стержне, Т1 и Т2- периоды колебаний маятника при первом и втором положении грузов на стержне, определяются по показаниям миллисекундомера  T= t/n.

 

Описание экспериментальной установки

Баллистический маятник ФПМ-09 это настольная установка (см. рис.4) К основанию крепится колонка, на которой установлены верхний, средний и нижний кронштейны.

Стальная проволока натянута между верхним и нижним кронштейнами.

Сам баллистический маятник представляет стержень с двумя
подвижными грузами равной массы, заканчивающийся с двух сторон
лопаточками с мишенями из пластилина. Маятник жестко закреплен на
стальной проволоке. Перемещая грузы вдоль стержня можно изменить момент инерции маятника. Стержень имеет шкалу, по которой определяют расстояние между центрами масс грузов и осью вращения маятника (см. рис.4).

 


На среднем кронштейне крепится пусковое устройство, предназначенное для пуска пули. При попадании пули в мишень маятник начинает совершать крутильные колебания.

 

Конец пускового устройства и стержень с грузами закрыты прозрачным экраном с нанесенной на нем круговой шкалой, по которой определяют угол отклонения маятника после выстрела.

На стальной проволоке также жестко закреплен короткий металлический стержень «водилка», который вместе с маятником ] совершает крутильные колебания и при этом перекрывает световой поток фотоэлектрического датчика, расположенного ниже среднего кронштейна. Фотоэлектрический датчик выдает сигнал на электрический миллисекундомер, находящийся на основании установки.

На передней панели миллисекундомера имеется табло «периоды» ( количество периодов или число колебаний) и табло «время» (отсчет времени ведется в секундах), а также кнопки «СЕТЬ», «СБРОС», «СТОП». Электрический миллисекундомер выдает показания количества колебаний п (периоды) и время колебаний t, по которым можно вычислить период колебаний маятника Т = t / n.





Выполнение работы

1 .Включить в сеть питания ключ миллисекундомера.

2. Нажать кнопку «Сеть», расположенную на лицевой панели миллисекундомера, при этом должны загореться лампочки и цифровые индикаторы, дать прибору 1 минуту прогреться.

3. Рукой отвести маятник на угол 15-20°, нажать кнопку «ПУСК» на миллисекундомере и убедиться, что он региструет время колебаний маятника. «Водилка» должна перекрывать световой поток фотоэлектрического датчика, Затем выключить миллисекундомер

4. Зарядить пусковое устройство, для чего одну из подвижных pучек повернуть вверх и вложить пулю, затем возвратить эту ручку в первоначальное положение. Потянуть обе подвижные ручки до щелчка.

5. Обнулить маятник, т.е. установить маятник и шкалу таким образом чтобы одна из лопаточек указывала на «0» шкалы

6.Оба груза максимально раздвинуть и измерить R1 линейкой

7. Произвести выстрел и определить угол максимального  поворота маятника φ1= к по круговой шкале ( к – количество делений по шкале поворота) и измерить l1 - расстояние от оси вращения до центра пули, залипшей в мишени при помощи линейки. Повторить эти действия 5 раз.

8. Найти среднее значение φ1ср.

9. Включить и обнулить, нажав кнопку «СБРОС», счетчик времени.

  10. Отклонить маятник на угол φ1ср .

     11. Измерить время 5 колебаний t1. Повторить 5 раз.

    12. Вычислите среднее время t1ср.

    13. Определите абсолютные погрешности измерения:  Δ t =  | tcp – t  |.

    14. Передвиньте грузы на одинаковое расстояние R2 от оси вращения  и проделайте такую же работу с пункта 7 по 13.

    15. Результаты измерений занесите в таблицу.

    16. По рабочей формуле вычислите скорость пули.

 

 

t1 Δ t1 t2 Δ t2 φ1 φ2 l1 l2
1
2
3
4
5
ср
lср R1 R2 n
5

Контрольные вопросы

 

1.  Сформулировать закон сохранения импульса и момента импульса.

2. Запишите выражение для импульса и момента импульса в векторной форме. Назовите их единицы измерения.

3. Можно ли считать, что кинетическая энергия в случае неупругого удара полностью переходит в потенциальную энергию маятника?

4. Почему воздействие маятник-пуля считается неупругим, центральным и прямым?

5. Что называется моментом инерции? Как определить момент инерции системы маятник-пуля и от чего зависит момент инерции системы?

6. Почему маятник называется баллистическим?

7. Почему систему маятник-пуля можно считать замкнутой?

8. Какими величинами определяется период физического маятника?

9. Сформулируйте теорему Гюйгенса-Штейнера.

 

Литература

1. «Лабораторные занятия по физике» под ред. Гольдина Л Л,М.: Наука,1983.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 163.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...