Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Влияние движения судна на поведение гирокомпаса




Из содержания предшествующего параграфа следует, что положе­нием равновесия главной оси чувствительного элемента (статического или динамического — в зависимости от того, снабжен чувствительный элемент демпфирующим устройством или нет) является плоскость компасного меридиана, отклоненная от плоскости истинного меридиа­на на угол

С целью анализа тех изменений, которые претерпевают основные характеристики чувствительного элемента гирокомпаса, установлен­ного на судне, движущемся с постоянной скоростью и на постоянном курсе, необходимо составить дефференциальные уравнения его движе­ния по отношению к плоскости компасного меридиана и истинного горизонта. Будем считать при этом для простоты, что чувствительный элемент не снабжен демпфирующим устройством.

Поскольку процедура составления уравнений движения по спосо­бу проф. Б.И.Кудревича в данном случае аналогична той, которая была подробно изложена в параграфе 2.1.5, предлагается выполнить соответствующую работу в качестве самостоятельного упражнения.

При этом окажется полезным рис.2.23. Особо подчеркнем, что ставится задача изучения движения чувствительного элемента гирокомпаса по отношению к системе координат ONKЕкn, отклоненной от стандарт­ной горизонтной системы координат ONEnна угол ẟv. Отклонение оси ОХ чувствительного элемента в горизонтальной плоскости от NKобоз­начим α1 (рис.2.24), у гол β остается прежним. После выполнения всех необходимых действий и с учетом тех же допущений, что были сделаны в параграфе 2.1.5, получим следующую систему дифференциальных уравнений:


Где W∑ представлена формулой (2.45)

Как это вытекает из системы (2.55), положение равновесия оси ОХ в азимуте а1r= 0, что и следовало ожидать вследствие смещения системы координат ONKЕкп на угол по отношению к системе ONEn.

Положение равновесия по углуβ1, определяется следующим выра­жением:

 

откуда следует [ср. с выражением (2.9) ], что оно зависит теперь нетолько от широты места, но и от параметров движения судна.

Выполним по отношению к системе уравнений (2.55) операцию разделения переменных. Дифференцируя первое из уравнений этой системы в предположении, что V = const, ИК = const, и пренебрегая медленными изменениями широты φ вследствие получим


 

 

Подставляя это значение β во второе уравнение системы (2.55), получим дифференциальное уравнение, характеризующее свободное движение главной оси чувствительного элемента ОХ по отношению к плоскости компасного меридиана:

 

 

Из уравнения (2.57) следует, что направляющий момент гирокомпаса

 

претерпел значительные изменения по сравнению с аналогичной характеристикой, которая была получена ранее для случая неподвижного основания [см. формулу (2.13) 1.

В рассматриваемом случае направляющий момент Rz зависит не только от горизонтальной составляющей вращения Земли, но и от параметров движения судна. Следствием этого факта является принципиально важный вывод о возможности обращения в ноль направляющего момента в широте, отличной от 90“.

Действительно, пусть судно движется вдоль параллели, т.е. Vn= 0. Если при этом составляющая скорости такова, что соблюдается равенство

 

 

то направляющий момент Rzобратится в ноль. Это означает, что если какое-то внешнее возмущение выведет главную ось чувствительного элемента ОХ из компасного меридиана, то из-за потери избирательности она в это положение равновесия уже не возвратится.

Представим выражение (2.59) в другом виде:


Это выражение дает ясное представление о физическом смысле эффекта потери направляющего момента. Суть явления состоит в том, что первое слагаемое, характеризующее линейную скорость точки зем­ной поверхности в данной широте места (всегда направлена в сторону вращения Земли с запада на восток), компенсируется вторым слагае­мым, характеризующим линейную скорость судна вдоль параллели, если она имеет отрицательный знак, что произойдет, например, на курсе ИК = 270° (VE= VsinИК), т.е. при движении основания с востока на запад.

Зная значение VE, можно на основании выражения (2.60) определить широту, в которой компас потеряет направляющий момент (эта широта называется критической):

Возвратимся к уравнению (2.57) и приведем его к нормальному виду

Где                  

 

откуда, учитывая выражение (2.45), найдем период собственных незатухающих колебаний гирокомпаса, установленного на судне, движущемся с постоянной скоростью на постоянном курсе:

 

Формула (2.63) является совершенно строгой. Для дальнейшего представляет интерес допустимость использования для определения периода Т0 колебаний гирокомпаса на движущемся судне более простых приближенных формул.

Если пренебречь величиной (Vn/Rз)2 по сравнению с выражением:

 

 

а если еще дополнительно пренебречь величиной Ve/Rз по сравнению WзCOSφ, то получим уже известную формулу (2.16) для периода колебаний гирокомпаса на неподвижном судне










Последнее изменение этой страницы: 2018-04-12; просмотров: 319.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...