Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Строение металлов и сплавов, их кристаллизация




"V/ о ' Внутренним строением металлов называется строение

и взаимное расположение их атомов, а также более крупная структура, видимая в микроскоп или невоору­женным глазом.

Металлы по внутреннему строению представляют со­бой совокупность нейтральных атомов, положительно или отрицательно заряженных ионов и свободных элек­тронов, образующих так называемый «электронный газ». Наличие «электронного газа» обусловливает высокую электро- и теплопроводность металлов, а взаимосвязь свободных электронов между собой и с ионами создает прочную связь, называемую металлической. Специфика металлической связи делает металлы пластичными (ков­кими).

Кроме природы атомов на свойства металлов влияют характер связи между атомами, расстояние между ни­ми и порядок их расположения.

Все металлы в твердом состоянии имеют кристалли­ческое строение, т. е. их атомы (ионы) расположены в строгом, периодически повторяющемся порядке, обра­зуя ,'в пространстве атомно-кристаллическую решетку (в противоположность аморфным твердым телам, атомы которых расположены в пространстве хаотично).

Порядок расположения атомов у различных метал­лов неодинаков. Обычно он определяется простыми ха-

Рис. 6. Порядок расположения атомов в простых реше-ках:

а—объемно-центрированной кубической (9 атомов); б—гранецентрирован-ной кубической (14 атомов); в —гексагональной плотноупакованной (17 ато­мов).

рактерными для большинства металлов (рис. 6) или сложными кристаллическими решетками. Линии на рис. 6 условные. Атомы 'в действительности колеблются возле положений равновесия, т. е. в узлах кристалличе­ской решетки. Расстояние между атомами в кристалли­ческой решетке измеряется в ангстремах (1А==10~9 нм). У большинства металлов расстояние между атомами на­ходится в пределах 0,28—6,8 нм.

Наименьший объем кристалла, дающий представле­ние об атомной структуре металла во всем объеме, на­зывается элементарной кристаллической ячейкой.

Получаемые обычным способом металлы представля­ют собой поликристаллические тела, состоящие из мно­жества элементарных ячеек, ориентированных относи­тельно друг друга самым различным образом. Ячейки имеют неправильную форму и называются кристаллита­ми, или зернами. Если сочетание элементарных ячеек правильное, по расположению атомов повторяющее эле­ментарную ячейку, то образовавшееся тело называется монокристаллом.

Металлические сплавы, как и металлы, имеют кри­сталлическое строение. При этом в зависимости от взаимодействия компонентов они подразделяются на твердые растворы, химические соединения и механиче­ские смеси.

Твердые растворы образуются тогда, когда при сплавления атомы одного элемента в разных количест­вах входят в кристаллическую решетку другого элемен­та, не изменяя в значительной мере ее формы. Элемент, сохранивший форму своей решетки, называется раство­рителем, а элемент, атомы которого вошли в эту решет- • ку,—растворенным. По размещению атомов растворен­ного элемента в решетке растворителя различают твер-

дые растворы замещения (атомы растворенного элемен­та располагаются в узлах решетки растворителя) и твердые растворы внедрения (атомы растворенного эле­мента находятся между атомами растворителя и узлами его решетки).

Если входящие в состав твердого раствора замеще­ния компоненты имеют близкое строение решеток и ато­мов, то такие элементы могут образовывать непрерыв­ный ряд твердых растворов, т. е. количество замещенных атомов может изменяться от 0 до 100 %.

При этом считается, что растворителем является тот элемент, содержание которого в сплаве более 50 %.

Растворы внедрения образуются элементами, сильно отличающимися строением решетки и размерами атомов.Твердые растворы являются гомогенными (однород­ными) сплавами, так как их структура представляет собой одинаковые по составу и свойствам зерна. Свой­ства твердых растворов ib значительной степени могут отличаться от свойств входящих в него компонентов. Все металлы в той или иной степени могут растворять­ся один в другом, образуя твердые растворы.

Химические соединения образуются при химическом взаимодействии атомов компонентов сплава, сопровож­дающемся значительным тепловым эффектом. При этом кристаллическая решетка химического соединения и все его свойства могут резко отличаться от решетки и свойств компонентов. В огличие от твердых растворов химические соединения обычно образуются между ком­понентами, имеющими большое различие в электронном строении атомов. Типичными примерами химических соединений являются соединения магния с оловом, свин­цом, сурьмой, висмутом, серой, селеном, теллуром и др. По своей структуре они гомогенны.

Химические соединения металлов называются интер­металлическими (интерметаллидами), а соединения ме­таллов с неметаллами (нитридами, гидридами, борида-ми, карбидами), обладающие металлической связью,— металлическими соединениями.

Механические смеси образуются тогда, когда при затвердении расплава атомы его компонентов не пере­мешиваются, а кристаллизуются в характерную каждо­му решетку. Структура таких сплавов гетерогенна (не­однородна) и представляет собой смесь кристаллов ком­понентов сплава, сохранивших свою структуру.

Рис. 7. Кривые охлаждения аморфного (а), кристаллического тела (б) и металлов (в), где /„ fn—температура кристаллизации и пере­охлаждения, "С; (Ti—Та) —время кристаллизации, с.

Строение кристаллического тела обусловливает сле­дующие особенные их свойства по сравнению с аморф­ными:

различие свойств монокристаллов в различных на­правлениях, т. е. анизотропность, или векториальность, свойств;

наличие плоскостей скольжения, приложение внеш­них сил приводит к скольжению (сдвигу) одной плоско­сти относительно другой;

•существование критической температуры при затвер­девании или плавлении, при которой происходит переход из жидкого (расплавленного) состояния в твердое или наоборот.

Переход металла из жидкого состояния в твердое называетсякристаллизацией, а из твердого в жидкое — плавлением. Если образование кристаллов происходит из жидкости при ее охлаждении, то этот процесс назы­вается первичной кристаллизацией, если образование кристаллов идет в твердом состоянии тела,—вторичной кристаллизацией.

Процессы кристаллизации графически изображают кривыми, строящимися в координатах температура — время (рис. 7).

Явление переохлаждения в кристаллизующемся ме­талле объясняется тем, что в период затвердевания про-

исходит резкие снижение подвижности атомов, вследст­вие чего скачкообразно изменяется его внутренняя энер­гия. Это сопровождается выделением тепла, которое подогревает жидкую ванну и некоторое время (7'!—Тч) удерживает ее температуру постоянной, пока жидкость полностью не закристаллизуется.

Степень переохлаждения тем больше, чем больше ско­рость охлаждения.

Русский ученый-металлург Д. К. Чернов в 1878 г. установил, что процесс кристаллизации состоит из не­скольких стадий. Первая стадия — образование зароды­шей (центров) кристаллизации. На последующих стади­ях из этих центров образуются дендриты (древовидные образования), которые, срастаясь, образуют зерна (крис­таллиты). При этом они не имеют правильной геометри­ческой формы, так как в местах соприкосновения расту­щих кристаллов рост граней прекращается.

Величина зерна металла — важнейшая характеристи­ка, которая определяет все основные его свойства. Мелко­зернистый металл имеет более высокие характеристики твердости, прочности, ударной вязкости, но у него пони­женная электропроводность, хуже магнитные свойства.

Размер зерна зависит от количества центров кристал­лизации и скорости роста кристаллов (скорости охлаж­дения). Чем больше центров кристаллизации и меньше скорость их роста, тем меньше будет зерно.

Образование центров кристаллизации может проис­ходить самопроизвольно или на имеющихся в жидком металле частицах примесей, что используется при моди­фицировании — введении в жидкий металл примесей (модификаторов).

На образование центров кристаллизации, а следова­тельно, и величину зерна влияет степень переохлаждения tv—i-n (см. рис. 7). Чем больше степень переохлаждения, тем больше центров кристаллизации и мельче образую­щееся зерно.

_ s. Способы изменения структуры и свойств металлов У         в твердом состоянии

Изменение структуры и свойств металлов производят и без его расплавления. Для этого используют три ха­рактерных для металлических веществ явления: алло­тропию, пластическую деформацию и рекристаллизацию.

Аллотропия (полиморфизм)—способность металлов

в твердом состоянии иметь различное кристаллическое строение (вид решетки). Процесс перехода одного вида решетки в другой называется аллотропическим, или по­лиморфным, превращением. Определенный тип решетки, характерный для металла в твердом состоянии и суще­ствующий в определенном интервале температур и дав­ления, называется модификацией (аллотропической фор­мой). Модификации металлов обозначают начальными буквами греческого алфавита: а, |3, у и др.

Известны модификации железа, кобальта, титана, олова, марганца, лития и др. Для железа характерны два аллотропических превращения: Fea^Fey. При темпе­ратуре менее 910 °С и в интервале от 1392 до 1539 °С железо имеет объемно центрированную решетку (Ред), а в интервале температур от 911 до 1392 °С — гранецент-рированную решетку (Fey). На рис. 8 переход железа из одной модификации в другую отмечен соответствующими горизонтальными площадками. При температуре 768 °С аллотропических изменений не происходит. Ниже этой температуры железо магнитно, выше — немагнитно. Тем­пературы 768 °С, 911°С, 1392 °С и 1539 °С называются критическими.

При нагревании железа и переходе Pea в Fey проис­ходят зарождение и рост новых зерен другой формы и размера. Как правило, при этом получаются более мел­кие, равноосные зерна, которые при охлаждении, т. е. превращении Fey в Fea, сохраняют свою форму и разме­ры. Металл получается с более мелкими и равномерными по размеру зернами. Следовательно, при постоянном дав­лении стоит только нагреть металл до такой температу­ры, при которой осуществляется переход из одной моди­фикации в другую, а затем охладить его, как атомы, перестроившись из одной решетки в другую, придадут новую форму и размеры зернам.

Процессы, связанные с аллотропическими превраще­ниями железа, широко используются при термической обработке стали и чугуна.

В некоторых случаях аллотропические превращения могут приводить и к разрушению металла. Например, олово при охлаждении ниже температуры —18 °С пре­вращается в порошок, известный под названием «оло­вянная чума».

Аллотропические превращения можно искусственно затормозить или вовсе не допустить путем быстрого ох­лаждения металла или добавки в него других элементов.

Пластическая деформация—это изменение размеров и формы металлов под действием приложенных сил и сохранение их после прекращения воздействия (в про­тивоположность упругой деформации, устраняющейся по­сле прекращения действия внешних сил).

В результате пластической деформации металл ста­новится более прочным, твердым и менее пластичным. Происходит это вследствие нарушения строения кристал­лической решетки, что затрудняет дальнейшую пласти­ческую деформацию. Явление упрочения металла при пластическом деформировании называется наклепом.

Пластическая деформация сопровождается также из­менением и более крупной структуры — формы и разме­ров зерен. При деформировании в одном направлении (например, при прокатке) зерна получаются вытянуты­ми. Такую структуру называют волокнистой. Это явле­ние в ряде случаев нежелательно, так как делает тело анизотропным, т. е. свойства его вдоль волокон отлича­ются от свойств поперек их.

Волокнистость устраняется нагревом (для устранения наклепа до температуры 300—400 °С). При этом обра­

зуются новые, отличительные от исходных, равновесные зерна металла. Такой процесс называетсярекристалли­зацией, а температура его протекания — температурой рекристаллизации.I Методы исследования структуры металлов и сплавов

Внутреннее строение, или структуру, металлов и их дефекты изучают с помощью макроструктурного, микро­структурного, магнитного, люминесцентного, ультразву­кового, рентгеновского н ^-Дефектоскопического методов анализа.

Макроструктура—это строение металла, видимое не­вооруженным глазом или при небольшом увеличении с помощью лупы.Макроструктурный анализ используют для выявления формы и расположения зерен в литом металле, направления волокон в поковках и штамповках, местонахождения, размеров и форм нарушения сплош­ности, дефектов сварки, оценки толщины поверхностного слоя в изделиях, подвергнутых специальной поверхност­ной обработке, и др. Его осуществляют просмотром от­шлифованной, отполированной и протравленной поверх­ности металлического изделия или макрошлифа (выре­занного из заготовки или металлоизделия темплета), по­верхность которого шлифуют и протравливают.

Микроструктурный анализ — это исследование струк­туры металлов и сплавов с помощью микроскопов с уве­личением от 1500 до 100000. Его осуществляют посред­ством изучения микрошлифов — вырезанных из метал­лоизделия или заготовки образцов, поверхность которых шлифуют, полируют и подвергают травлению специаль­ными реактивами. При использовании электронных мик­роскопов рассматривают тонкий прозрачный слепок с микрошлифа — фольгу, или реплику.

В последнее время для исследования структуры и свойств металлов широко применяются методы фракто-графии, позволяющие исследовать строение изломов, т. е. поверхностей, образующихся в результате разрушения металлоизделий или заготовок. Изломы изучают посред­ством макро- и микроструктурного анализа.

Магнитный метод (магнитная дефектоскопия) приме­няется для выявления трещин, волосовин, раковин и дру­гих дефектов, находящихся на поверхности (или близко около нее) изделий из ферромагнитных материалов. Сущ-

ность метода заключается в намагничивании изделия. Затем на поверхность наносится магнитный порошок оки­си железа или его суспензия в керосине. Частицы порош­ка под действием магнитного потока, рассеивающегося в месте расположения дефекта, ориентируются по сило­вым линиям. В результате отчетливо выделяются даже самые мелкие дефекты.

Люминесцентный метод (люминесцентная дефекто­скопия) используется для выявления поверхностных де­фектов изделий (микротрещин). Он основывается на свойстве некоторых органических веществ светиться под действием ультрафиолетовых лучей. Сущность метода заключается в нанесении на поверхность изделия специ­ального флуоресцирующего раствора и ее освещении ультрафиолетовым светом. Проникающий в микротрещи­ны раствор под действием лучей светится, тем самым по­зволяя их выявить.

С помощьюультразвукового метода (ультразвуковая дефектоскопия) выявляют дефекты, расположенные глу­боко в толще металла. Для этого используются ультра­звуковые дефектоскопы, с помощью которых через тол­щу металла пропускают пучок ультразвуковых волн и контролируют их прохождение. Любая несплошность ме­талла нарушает нормальное распространение волн, что можно увидеть на экране имеющегося в приборе осцил­лографа.

Рентгеновский метод (рентгеновская дефектоскопия)применяется для контроля литых, кованых и штампован­ных деталей, а также сварных соединений. Он заклю­чается в просвечивании деталей рентгеновским излуче­нием и фиксировании выходящего излучения на специ­альной светочувствительной пленке. При этом темные места на пленке свидетельствуют о наличии дефектов в исследуемых деталях.

Разновидностью рентгеновского метода являетсяу-де-фектоскопия.










Последнее изменение этой страницы: 2018-04-12; просмотров: 309.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...