Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теплоносители. Классификация, область применения.




Законы термодинамики

Термодинамика основывается на трёх законах, которые сформулированы на основе экспериментальных данных и поэтому могут быть приняты как постулаты.

 1-й закон термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как δQ = δA + d'U, где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты и элементарная работа, совершенная над системой соответственно. Нужно учитывать, что δA и δQ нельзя считать дифференциалами в обычном смысле этого понятия. С точки зрения квантовых представлений этот закон можно интерпретировать следующим образом: dU есть изменение энергии данной квантовой системы, δA есть изменение энергии системы, обусловленное изменением заселённости энергетических уровней системы, а δQ есть изменение энергии квантовой системы, обусловленное изменением структуры энергетических уровней.

 2-й закон термодинамики: Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в тоже время эквивалентных формулировок этого закона. 1 - Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких либо других изменений в системе. Это явление называют рассеиванием или дисперсией энергии. 2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

 3-й закон термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю.Энтропия любого тела при температуре абсолютного нуля также равна нулю. Считается, что если термодинамическая система переходит из одного состояния в другое при температуре, близкой к абсолютному нулю, то энтропия не изменяется.При Т=0,S0=0

Энтропия- Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при замкнутых обратимых процессах, тогда как в необратимых — её изменение всегда положительно. Поскольку энтропия является функцией состояния, то она не зависит от того, как осуществлён переход из одного состояния системы в другое, а определяется только начальным и конечным состояниями системы.

 Энтальпия—термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. Это та энергия, которая доступна для преобразования в теплоту при определённом постоянном давлении.

Теплоносители. Классификация, область применения.

Теплоноситель — жидкое или газообразное вещество, применяемое для передачи тепловой энергии. На практике чаще всего применяют воду (в виде газа или жидкости).

В большинстве приборов/инженерных систем и др., служащих для передачи/распределения тепла используется теплоноситель, например: системы отопления зданий, холодильник, кондиционер, масляный обогреватель, тепловой пункт, котельная, солнечный коллектор, солнечный водонагреватель и др.

Классификация:

1. По температуре замерзания.

2. По токсичности.

3. По экологичности.

Наиболее распространенными видами теплоносителей в системах отопления являются: вода и водные растворы этиленгликоля и пропиленгликоля с модифицирующими присадками.

Вода - занимает примерно 68 % от всего объема используемых теплоносителей. Антифризы (низкозамерзающие жидкости) занимают оставшиеся примерно 30 % объема теплоносителей. В свою очередь антифризы производятся на основе: этиленгликоля - около 25 % от всего объема теплоносителей; пропиленгликоля - около 5 % от всего объема используемых теплоносителей. Как правило, оставшиеся 2% антифризов приходится на специальные безводные охлаждающие жидкости.

Антифриз представляет собой смесь воды, основного компонента (как правило, этиленгликоля или пропиленгликоля) и целевых добавок. Для снижения коррозионной активности антифризов используются ингибиторы коррозии. Также в состав теплоносителя вводят ингибиторы накипеобразования, набухания и растворения резиновых уплотнителей систем отопления, пенооборазования и мн. др.

Ингибиторы - (от лат. Inhibeo – задерживаю) в химии – вещества, тормозящие химические процессы, например коррозию, полимеризацию, окисление. Относительная масса ингибиторов, добавляемых в реакционную среду, может меняться от долей процента (ингибиторы полимеризации) до нескольких процентов (присадки к смазочным маслам).Необходимо также отметить, что в настоящее время на рынке антифризов появились новые экономичные антифризы на основе органических солей марки ТЭЖ (ацетата и формиата калия) с температурным диапазоном эксплуатации от +102°C до -5°C. Для удобства сравнения основные достоинства и недостатки вышеупомянутых теплоносителей (антифризов) приведены в таблице 1.

ТЕПЛОНОСИТЕЛЬ ДЛЯ СИСТЕМ ОТОПЛЕНИЯ

Какой теплоноситель будет использоваться антифриз или вода? Этот вопрос надо решить до создания проекта системы отопления. Тип теплоносителя влияет на мощность котла, отопительных приборов (радиаторов, конвекторов), на параметры насоса и на возможность применения различных материалов системы отопления. Рассмотрим вариант, когда нет опасности размораживания системы отопления вследствие прекращения работы котла. В таком случае оптимальный теплоноситель - это вода. Вода имеет прекрасные теплофизические свойства, она экологически безопасна. Но далеко не все догадываются, что у воды есть недостатки. Среди них высокая коррозионная активность по отношению к металлам, склонность к выпадению солей на поверхности оборудования. Существуют эффективные методы борьбы с коррозией и солеобразованием в системах отопления. Один из них - добавление в воду присадок-ингибиторов, которые снижают ее коррозионную агрессивность и уменьшают солеобразование. Таким простым способом можно продлить "жизнь" своей отопительной системы.

Далее рассмотрим вариант, когда размораживание системы возможно (из-за перебоев в подаче электроэнергии, падения давления газа или по другим причинам). В этом случае стоит подумать о применении антифриза (низкозамерзающей жидкости) в качестве теплоносителя.

Внимание! Это должен быть не автомобильный тосол, трансформаторное масло или этиловый спирт, а антифриз, специально разработанный для систем отопления. Антифриз должен быть пожаробезопасным и не содержать в своем составе добавок недопустимых к применению в жилых помещениях.

На российском рынке представлены различные антифризы для систем отопления. Антифризы отличаются по веществу, на основе которого они изготовлены (этиленгликоль, пропиленгликоль), по набору присадок, по температуре кристаллизации и по стоимости. Большинство антифризов изготовлено на основе этиленгликоля. Этиленгликоль - токсичное вещество, попадание которого на кожу или тем более в организм человека крайне не желательно. Кроме того, вредны и его испарения. Смертельная доза этиленгликоля составляет 5 миллиграмм на 1 кг веса. Принимая во внимание токсичность этиленгликоля, нежелательно применение антифриза на его основе в двухконтурных котлах, когда возможен подмес теплоносителя из контура отопления в контур водоснабжения, а также в открытых системах отопления, где возможно испарение теплоносителя. Менее опасен для человека низкозамерзающий теплоноситель, который изготовлен на основе пропиленгликоля. При этом пропиленгликоль может быть пищевым и техническим. Наиболее безопасен антифриз на основе пищевого пропиленгликоля.

Внимание! Некоторые иностранные производители снимают свое оборудование с гарантии при применении антифриза!

Отрицательное воздействие на антифриз может оказать слишком высокая температура, возникающая при ненормальном функционировании системы отопления. При перегреве теплоносителя свыше +107°С повышается скорость термического разложения этиленгликоля и антикоррозионных присадок. Для того чтобы избежать этого эффекта, надо обеспечить надлежащую циркуляцию теплоносителя в системе отопления.

При применении антифриза надо учитывать что: теплоемкость антифриза примерно на 10-15% ниже, чем у воды (он хуже накапливает тепло и хуже отдает его), следовательно, радиаторы надо выбирать более мощные, вязкость антифриза выше, чем у воды, поэтому нужно выбирать более мощные циркуляционные насосы, антифриз более текуч, чем вода, отсюда повышенные требования к разъемным соединениям системы отопления.

Обычно антифриз продается в двух модификациях: с температурой замерзания минус 65°С и температурой замерзания минус 30°С. При этом концентрированный вариант (рассчитанный на минус 65°С) может быть разбавлен водой до требуемой вам концентрации. Для получения теплоносителя с температурой замерзания минус 30°С к двум частям антифриза надо добавить одну часть воды, для минус 20°С - надо смешать антифриз пополам с водой.

Рекомендации производителей антифриза

Разбавление антифриза более чем на 50%, ведет к ухудшению его антикоррозийных свойств, а также к выпадению осадка солей жесткости, растворенных в воде. Если Вам необходимо иметь антифриз, разбавленный водой более чем на 50%, то в раствор следует добавить дополнительные присадки (суперконцентрат) в количестве рекомендованном производителем. Для разбавления антифриза желательно использовать воду с жесткостью до 7 единиц (в московской водопроводной воде жесткость составляет от 2 до 6 единиц). Использование воды с повышенным содержанием солей может привести к выпадению осадка. Если жесткость воды неизвестна, то рекомендуется предварительно смешать небольшое количество антифриза с водой в нужной вам пропорции в прозрачной емкости и убедиться в отсутствии осадка. Не рекомендуется заливать антифриз в системы, изготовленные из оцинкованных труб, так как водо-гликолевая смесь при взаимодействии с цинком образует чрезвычайно объемистые осадки, которые могут блокировать работу системы.










Последнее изменение этой страницы: 2018-04-12; просмотров: 186.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...