Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Контакт электронного и дырочного полупроводников




Л Е К Ц И Я № 15

В подавляющем большинстве устройств, используемых в настоящее время в технике, главной частью является контакт двух примесных полупроводников, обладающих различной проводимостью, так называемый электронно-дырочный переход или p-n-переход.

 

Контакт между n- и p-типами полупроводников можно получить:

1) путем прямого тесного соединения двух образований, имеющих различные типы проводимости (но такой контакт очень плох, т. к. существуют окисные пленки, различные дефекты и др.);

2) методом вплавления – при этом вплавленный p-n-переход характеризуется почти скачкообразным изменением типа проводимости и поэтому называется резким p-n-переходом;

3) методом диффузии – такой переход образуется в результате диффузии акцепторной примеси из газообразной или жидкой фазы в донорный полупроводник или, наоборот, донорной примеси в акцепторный полупроводник.

 

В полупроводнике n-типаосновными носителями заряда являются электроны, отданные донорами в зону проводимости. Здесь же есть и небольшое число дырок (неосновных носителей), образованных за счет перехода электронов из валентной зоны непосредственно в зону проводимости.

В полупроводнике р-типаосновными носителями заряда являются дырки. Кроме того, здесь имеется небольшое количество электронов (неосновных носителей), которые перешли непосредственно из валентной зоны в зону проводимости в результате теплового движения электронов.

 

 

 

 


После приведенных в контакт двух полупроводников с разной проводимостью через границу раздела начинается диффузия электронов и дырок.

 

Электроны из полупроводника n-типа диффундируют в полупроводник p-типа, при переходе через границу раздела электроны встречаются с дырками и рекомбинируют (электроны и дырки уничтожают друг друга). И на границе полупроводника p-типа начинает накапливаться нескомпенсированный отрицательный заряд ионов решетки, который прекращает диффузию электронов.

 

Дырки из полупроводника p-типа диффундируют в полупроводник n-типа, при переходе через границу раздела дырки встречаются с электронами и рекомбинируют (дырки и электроны уничтожают друг друга). И на границе полупроводника n-типа начинает накапливаться нескомпенсированный положительный заряд ионов решетки, который прекращает диффузию дырок.

 

Разделение зарядов на границе двух полупроводников приводит к созданию запирающего электрического поля с напряженностью , которое не дает ни электронам, ни дыркам двигаться через границу раздела – говорят, образовался p-n-переход.

 

Образование p-n-перехода можно объяснить с помощью зонной теории твердых тел.

 

 


В полупроводнике n-типа уровень Ферми расположен выше, чем в полупроводнике p-типа. Это значит, что <W> электронов в полупроводнике n-типа выше, чем в полупроводнике p-типа (электроны полупроводника n-типа «горячее» электронов полупроводника p-типа).

После приведения в контакт полупроводников с разной проводимостью стремление электронов занять состояния с меньшей энергией приведет к появлению диффузии электронов.

 

 

.

 

,

 

.

 

 

Переход «горячих» электронов из полупроводника n-типа в полупроводник p-типа, где электроны «холодные», приводит к снижению средней энергии в полупроводнике n-типа и к повышению средней энергии в полупроводнике р-типа (это приводит к смещению энергетических зон).

Диффузия будет проходить до тех пор, пока уровень Ферми в обоих полупроводниках не сравняется.

 

 

 

 


т. к. , тогда !

 

Смещение зон относительно друг друга приводит к образованию потенциального барьера, который электроны самостоятельно преодолеть не могут.

Все замечательные свойства p-n-перехода проявляются при включении его в электрическую цепь.

Различают прямое и обратное включения.


 

Прямое включение

 

Напряженность внешнего электрического поля направлена навстречу запирающему и снижает его действие. Поэтому при прямом включении через переход течет электрический ток. И чем больше напряженность внешнего поля, тем больше величина силы прямого тока.

 

При прямом включении полупроводник n-типа получает от внешнего источника дополнительные «более горячие» электроны и <W> электронов в полупроводнике n-типа увеличивается. И из полупроводника p-типа электроны уходят, что снижает <W> электронов в нем.

Это приводит к смещению энергетических зон относительно друг друга и уровни Ферми вновь оказываются не на одной высоте.

 

Работа внешнего электрического поля

 

.

 

При этом высота потенциального барьера между энергетическими зонами полупроводников с разной проводимостью уменьшается. И чем больше внешнее напряжение U, тем ниже потенциальный барьер, а значит больше сила тока прямого включения.


 

 

 

 


 

(Сопротивление p-n-перехода при прямом включении снижается)

 

.

 

 

Обратное включение

 

 

Напряженность внешнего электрического поля направлена в ту же сторону, что и запирающее и усиливает его действие. Электрического тока через p-n-переход не должно быть.

Но эксперимент показывает, что при обратном включении есть небольшой обратный ток (~ в 103 раз меньше прямого тока).

Обратный ток объясняется наличием в полупроводниках неосновных носителей заряда (в полупроводниках n-типа – дырок, а в полупроводниках p-типа – электронов). Т. к. их небольшое количество, то они все вовлекаются в процесс переноса зарядов и небольшой ток достигает быстро насыщения.

 

При обратном включении из полупроводника n-типа уходят электроны и <W> оставшихся электронов снижается, а полупроводник p-типа от внешнего источника получает «более горячие» электроны и <W> электронов в этом полупроводнике увеличивается.

Это приводит к смещению энергетических зон относительно друг друга и уровни Ферми оказываются вновь не на одной высоте, но при этом , т. е. .

 

Тогда работа внешнего электрического поля при обратном включении

 

.

При этом высота потенциального барьера между энергетическими зонами полупроводников с разной проводимостью еще более возрастает, препятствуя току основных носителей.

 

 

 

 


откуда                             

при U = 0, Iобр = 0, при

(ток неосновных носителей заряда).

 

Т. к. p-n-переход в прямом направлении хорошо пропускает электрический ток, а в обратном направлении практически не пропускает, то такое устройство стали называть полупроводниковым диодом.

Полупроводниковые диоды нашли широкое применение в качестве полупроводниковых элементов в выпрямителях электрического тока (где переменный ток преобразуется в постоянный).

 

А если привести в контакт три полупроводника с разной проводимостью n-p-n или p-n-p, то такое устройство будет еще и обладать свойством управления сигналами - полупроводниковый транзистор.

 

 

 


Соединение большого количества полупроводников с разной проводимостью – интегральная схема (широкое использование в микроэлектронике).

 

 15. Термоэлектронная эмиссия

Электроны в любом твердом теле не свободные частицы, они находятся в потенциальной яме и их энергия квантуется.

В отличие от диэлектриков и полупроводников, где нет свободных электронов, в металлах электроны, занимая все нижележащие уровни вплоть до уровня Ферми, наделенные эффективной массой, считаются практически свободными в пределах металла.

 

Но самостоятельно из металла они не могут выбраться, нужна дополнительная энергия º работа выхода электрона из металла Авых.

Если дополнительную энергию сообщают путем облучения металла электромагнитным излучением и при  электроны покидают металл – это внешний фотоэффект.

 

А если дополнительную энергию сообщают путем подведения тепла (нагревания металла), тогда, если , то электроны тоже могут покидать металл.

Явление вырывания электронов с поверхности металлов при их нагревании называется термоэлектронной эмиссией.


 

 

 


Т. к. W вылетевших электронов , тогда функцию распределения Ферми-Дирака можно записать

 

 

Т. о. для вылетевших электронов вырождение снижается и они становятся классическими частицами и описываются функцией распределения Максвелла-Больцмана.

 несколько эВ (табл.)

Тогда при Т = 300 К 0,026 эВ ® ,

а при Т = 3000 К , тогда , а это уже заметный ток.

 

Термоэмиссия находила и находит широкое применение в различных электронных устройствах (ЭЛТ, электронные пушки и т. п.).

 











Контакт двух металлов

Законы Вольта:

1) При контакте двух проводников из разных металлов между ними возникает контактная разность потенциалов, которая зависит только от химического состава металлов и их температуры.

2) Разность потенциалов между концами электрической цепи, состоящей из последовательно соединенных металлических проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников, а определяется лишь разностью потенциалов, возникающей при непосредственном контакте крайних проводников.

 

Классическая физика объяснить смогла только 2-й закон Вольта:

.

 

 

1 2 3 4

Только квантовая физика дала объяснение первого закона Вольта.

 

 

 


Т. к. уровни Ферми в разных металлах находятся на разной высоте, то возникает внутренняя контактная разность потенциалов

 

 

 

Это при контакте металлов приводит к диффузии электронов ® уровень Ферми выравнивается и возникает внешняя контактная разность потенциалов.

 

 

 


Эффект Зеебека

В 1823 г. немецкий физик Зеебек установил, что в цепи, состоящей из 2-х разнородных проводников 1 и 2

 

 

 

 


возникает ЭДС, если контакты этих проводников поддерживаются при различных температурах Т1 и Т2.

Эта ЭДС называется термо-ЭДС.

 

Как показывает опыт, в относительно узком интервале температур она ~ разности температур контактов:

 

 

Коэффициент пропорциональности:

 

 

называется дифференциальной или удельной термо-ЭДС.

 

Она зависит от природы соприкасающихся проводников и разности температур их спаев.

Физический смысл с: она равна  при разности температур контактов (спаев) = 1 К.

Долгое время эффект Зеебека применялся лишь в измерительных целях.

Помещая один спай термопары в термостат с постоянной температурой, другой в исследуемую среду, можно по возникающей  определить температуру среды!

Т. о. удается весьма просто, надежно и с достаточно большой степенью точности измерять температуру в широком диапазоне.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 231.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...