Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

First production applications could be realized within five years, possibly on A380




Вариант 4

Задание 1. Перепишите предложения. Поставьте глаголы в скобках в нужную видо-временную форму активного или пассивного залога. Переведите предложения на русский язык.

1. She (to know – знать) how to deal with computers.

2. By the end of 1980s the price of solar cells (to drop – падать) considerably.

3. I already (to fix – ремонтировать) the tap when Sam (to offer – предложить) to help me.

4. This effect … (to reduce – снижать, уменьшать) by the use of a specially developed coating (покрытие).

5. Astronauts … (not to change – не менять) film during the mission (полет).

6. This machine (to develop – создавать) in response to the need of a less costly machine.

7. Participants at the last session (to explore – исследовать) this unusual seismic activity.

8. The space crew (экипаж) (to observe – наблюдать) the Earth-Sun environment using identical instruments.

9. Data from particle physics experiments (to sort – сортировать) and stored in the same way.

10. This design (to adjust – приспособить) to the market much better than the previous one.

 

Задание 2. Перепишите предложения, выделите глаголы to be/ to have/ to do и определите их функцию. Переведите предложения на русский язык.

1. Photons in photonic crystals should obey (to obey – подчиняться, слушаться) the same principles as do electrons in semiconductors.

2. These systems are to be lighter, more reliable and more fault tolerant.

3. Newer machines had a long useful life.

4. The aim of the experiment was to synthesize 10 A phase in the same reaction.

5. They will have to record holograms quickly, preserve them and erase old data.

6. The company will have to do some work in that field of production.

7. When satellites do take off, there is no guarantee that they will teach their destination.

8. Did you know that around 25 tons of air passes through the engine every minute?

Задание 3. Перепишите предложения. Выделите служебные слова it, that, one, определите их функцию и переведите предложения на русский язык. Распознайте усилительную конструкцию It is/ was … who/ that – именно…; It was not before/ until … when – только после…; This/ that is where – вот где.

1. There is also a danger that this technology could be used against the US.

2. It is here that the analysis begins to weaken.

3. One paper is based on important documents only recently discovered.

4. That highway would serve as an important link in the transportation system. It took nearly ten years to complete it.

5. There are certainly parallels between the development of the snowmobile and that of the automobile.

6. One often gets a sense (чувство) that the diplomats work at one speed while political events rush along at a much faster one.

Задание 4. Перепишите предложения. Заполните пропуски одним из союзных слов (who, what, that, which, where, when, whose), укажите, в каких предложениях союз можно не употреблять). Переведите предложения на русский язык.

1. All engines … ignition starts as a result of high pressures, are called “Diesel engines”.

2. We have already found … will take the job.

3. Increasing capacity (объем грузоперевозок) is the only solution … we should accept.

4. He told … it would cost $ 800 million to start the program.

5. The women programmed the machine … no one had formerly tested.

6. The luminosity (освещенность) decreased sharply … the planet was passing in front of the star.

7. Steven Vogel, a professor of biology, … field is biomechanics, explains how non-metallic man-made materials avoid catastrophic cracking.

 

Задание 5. Перепишите предложения. Выделите инфинитив, герундий и причастие и определите их функцию. Переведите предложения на русский язык.

1. Difficulties still remain in achieving high precision (точность).

2. Some people decided to get out of the sport, especially after they sustained injury (травма).

3. Programming was a woman’s job.

4. There are problems to be solved.

5. There must have been a learning process constantly accompanying (to accompany – сопутствовать) this technology transfer.

6. There were differences in the philosophy used by social workers in developing countries.

 

Задание 6. Перепишите предложения, распознайте и выделите инфинитивные обороты – объектный, субъектный, определительный и обстоятельственный.

1. Agricultural aircraft are being designed to meet (соответствовать) certification standards.

2. Operators watched the process speed up.

3. In order to maintain production schedules (график) the company has continued with a normal five-day workweek.

4. This industry is expected to grow at a rate of 5,9 % annually.

5. The aim of this school was developing knowledge to be applied to engineering.

6. The engine seems to have created more interest in engineering circles than among potential customers.

7. The professor wanted engineering students to learn something about history of engineering.

8. Plans to begin operations are still being delayed (to delay – откладывать).

9. Programmes will allow several engineers to work interactively on the same problem.

 

Задание 7. Перепишите предложения, выделите причастные обороты – определительный, дополнительный, обстоятельственный и независимый.

1. Business leaders having made mistakes, success often came when they hired (to hire – нанимать) the right scientist-manager.

2. Researchers can track position of the fields on the Sun with a device called magnetometer.

3. Fuel today hovering around 60 cents per gallon, it may reach about $ 1 per gallon in near future.

4. He expects a draft bill (законопроект) written by the ends of April.

5. A constellation of satellites operating around the clock generates great amounts of data.

6. Everything is automated, including quality control.

7. We expect satellites increasing in size to new levels of some 3,4 tons, satellite lifetime being extended.

 

Задание 8. Сослагательное наклонение. Перепишите предложения. Определите тип условного предложения, переведите предложение на русский язык.

1. If the printers were fully developed, where would you sell them?

2. If allowed by payload (грузоподъемность) design, the payload module would be based on the same structure as the main platform.

3. If the economy remains active, demand for new aircraft will rise as aging aircraft are replaced.

4. Had the machine not been available, the job would have kept busy 100 trained men for a whole year.

5. If this scholarly trend (направление в науке) continues, it will be with benefits (польза).

Задание 9. Смотрите образцы выполнения заданий.

Вариант 5

Задание 1. Перепишите предложения. Поставьте глаголы в скобках в нужную видо-временную форму активного или пассивного залога. Переведите предложения на русский язык.

1. The train (to slow down – замедлять ход) before our eyes.

2. … any problems … (to arise – возникать) in the lining (облицовка) of the tunnel?

3. The first truck with a diesel … (to show – показывать) at the Paris exhibition in the spring of 1928.

4. About 280 of the aircraft … (to modify – модифицировать, реконструировать) to date.

5. Automobile … (to buy) and … (to use) for basic convenience and as a manifestation of social status.

6. Most parts of the technology … (to make - делать) good progress since that early demonstration.

7. The company … just … (to go through – пройти, перенести) a difficult period, but again was ready to start new project.

8. Some towns … (to ban – запрещать) snowmobiles outright.

9. The first motor … (to manufacture – изготовлять) in 1911 and the industry … (to progress) slowly until World War II.

10. The current phase of the program … (to finish) in 5 years.

 

Задание 2. Перепишите предложения, выделите глаголы to be/ to have/ to do и определите их функцию. Переведите предложения на русский язык.

1. Deliveries (доставка) are to begin in March.

2. The engineers did not reveal the full extent of work.

3. One aircraft is being used as a demonstrator (экспонат).

4. The expedition had to repair a defective segment of the telegraph cable.

5. Technical textbooks serve the same function in engineering practice as grammars do for linguistic usage.

6. Our task is to link the countries of Europe and America.

7. Only in times of war or crisis did the US Government intervene actively in the international radio communications.

8. France had brilliant engineers, business people and plentiful capital.

 

Задание 3. Перепишите предложения. Выделите служебные слова it, that, one, определите их функцию и переведите предложения на русский язык. Распознайте усилительную конструкцию It is/ was … who/ that – именно…; It was not before/ until … when – только после…; This/ that is where – вот где.

1. The Interspace complex in France is one of the most advanced test centres in Europe.

2. It was found that the zone beneath northeastern Japan was much colder.

3. They aren’t the only ones interested in resurrecting (воскрешение) a mammoth.

4. This is where the future lies for science and technology.

5. It is the skill of the driver that makes the snowmobile glide and drift and speed.

6. The result is a good book, one which contains an excellent review of literature.

 

Задание 4. Перепишите предложения. Заполните пропуски одним из союзных слов (who, what, that, which, where, when, whose), укажите, в каких предложениях союз можно не употреблять). Переведите предложения на русский язык.

1. There is no guarantee … the satellite will reach its destination (точка назначения).

2. We have shown … high-pressure reactions can be observed under dynamic conditions.

3. There were twenty-three researchers and curators at the museum … it opened.

4. The program has entered the final phase of demonstration … began in November.

5. We can demonstrated … people also respond to technology with enthusiasm.

6. A medal is presented annually to an individual … has made an outstanding contribution to technology.

7. Present this information to people … need it and … they need it.

Задание 5. Перепишите предложения. Выделите инфинитив, герундий и причастие и определите их функцию. Переведите предложения на русский язык.

1. New methods of solving problems using parallel processors need to be developed.

2. Ford Aerospace has successfully completed (to complete – завершать) testing the components.

3. You must go out in the world and do something.

4. Micromagnetic simulations were used to investigate the demagnetization processes.

5. Engineers wanted answers faster than women could supply them using available (имеющийся в наличии) technology.

6. The Administration plan to reduce the defense budget total by 2 % per year, not counting inflation.

 

Задание 6. Перепишите предложения, распознайте и выделите инфинитивные обороты – объектный, субъектный, определительный и обстоятельственный.

1. Oceanic crust is predicted to transform to eclogite.

2. Property owners rejected (to reject – возражать) increased taxes to pay for infrastructure work.

3. The industry is likely to lose money in 2010.

4. In order to produce these new models, the company opened branch plants.

5. Each program is expected to find ways to cut costs (затраты).

6. Administration wants the program to move forward to its completion.

7. Each thermal pump required an engineer to make repairs.

8. The aim of this school was acquiring (приобретение) knowledge to be applied in engineering.

9. To improve space Weather forecasting (прогнозирование), researchers are studying the sun.

 

Задание 7. Перепишите предложения, выделите причастные обороты – определительный, дополнительный, обстоятельственный и независимый.

1. All personnel working in the building were evacuated.

2. In the case being considered here, the critical Reynold’s number is close to the lower limit.

3. Having no adequate protection, satellites or astronauts can be in danger.

4. In the same year 30000 trucks were produced in France, one-fourth of them being delivered to the military.

5. Students see their engineering professors paying attention to history of technology.

6. Product sales represented 57 % of total revenues (доходы), the remained coming from special projects.

7. The city engineers proposed for a wide boulevard extending between the east and west boundaries (границы) of the city.

 

Задание 8. Сослагательное наклонение. Перепишите предложения. Определите тип условного предложения, переведите предложение на русский язык.

1. If a motor-car is noisy and goes like a hell, it will sell.

2. If this scholarly trend (тенденция) continues, it will be with benefits (польза).

3. If they were not technicians, how would decide what to built?

4. The problem could have been avoided if a different kind of transport had been used.

If we traveled to the Third World, our doctors would vaccinate us to prevent hepatitis.

 

Задание 9. Смотрите образцы выполнения заданий.

 

 

Тексты на выбор для выполнения задания № 9

в соответствии со специальностью!!!

(описание в образце 2.9)

 

Air-Pollution Control

Clean air, an essential component of a healthful environment, is a mixture of many different gases. Two gases predominate: nitrogen, which makes up 78 percent of the volume clean dry air, and oxygen, which makes up 21 percent. In the Earth’s atmosphere, water vapour is also a significant component but the most variable one, ranging from 0,01 to 4 percent by volume, its consentration in air varuing daily and seasonally, as well as geographicully.

Air is considered to be polluted when it contains certain substances in concentrstions high enough to cause harm of undesirable effects. The atmosphere is susceptible (подвержена) to pollution from natural sources as well as from human activities. Only pollution caused by human activities, such as industry and transportation is subject to mitigation and control.

Beginning in the 19th century, incresing use of fossil fuels inteusified the severity and frequency of air-pollution episodes. It was not until the middle of the 20th century, that attempts were made to regulate or limit emissions of air pollutants from stationary or mobile sources (i.e., gasoline – powered highway venicles) and to control air quaility on both regional and local scales.

The focus of air pollution requlation in indutrialized countries was initially on protecting outdoor air quality. This involved the control of a small number of pollutants known to contribute to urban smog and chronic public health problems. Toward the end of the 20th century, the dangerous effects of trace (ионов) amounts of many other air pollutants were recognized, and emission requlations were implemented. Long-term effects of certain substances on atmospheric chemistry and climate were alspo observed at that time.

 

Questions to be answered in writing:

1. Which air components predominate in clean air of a healthful environment?

2. When is air considered to be polluted?

3. What kind of pollutions is subject (подлежит) to mitigation and control?

4. What have emission regulations focused on in the latest 50 years?

 

Generation of Oil

Oil is generated in sedimentary basins. These basins are shallow depressions on the continents that have intermittently (прерывисто, перемежаясь) been covered with seawater, or offshore basins on continental shelves. They are hundreds of square kilometers in area and contain sediments of three types: 1) rock particles varying from sands to clay muds, which were eroded from mountains and were carried to the basins by streams; 2) biochemical and chemical precipitates such as limestone gypsum, anhydrite; 3) organic matter from the plants and animals that lived in the sea or were carried in by rivers. The third type of sediment, the organic matter, is the source of petroleum. Evidence (свидетельство) for this is the fact that petroleum contains small amounts of several substances that could have come only from living things. Examples of these are porphyry related to (родственный) hemi and chlorophyll.

It is believed that oil is generated from organic matter in two ways. A small amount probably less than 10 % comes directly from the hydrocarbons (углеводородные соединения) that marine organisms form as part of their living cells. The second process, by which about 90 % of the oil is formed, involves the formation of hydrocarbons from the decay and alteration of buried, organic matter. Nearly all of the hydrocarbons containing up to 10 carbon atoms are formed in this manner. By the time the sediments are buried to depths of 500-700 m, enough hydrocarbons have been generated to enable a commercial oil field to form under favourable accumulation conditions. It is estimated there are 6000x10 (в 9 степени???) tons of petroleum in the reservoir rocks of the continents and continental shelves of the world.

 

Questions to be answered in writing:

1.  Where is oil generated?

2.  What are the types of sediments which sedimentary basins contain?

3.  Where is oil generated from?

4.  How much petroleum is available in reservoir rocks (of the world)?

 

Automobile

Automobile is a general term for a self-propelled, trackless (нерельсовый; негусеничный), personal or public carrier, which includes passenger cars, recreational vehicles, taxis and buses used to transport people in cities, on highways, or across country.

Passenger cars are available in several body styles and in various sizes. Passenger cars are equipped with four-stroke internal combustion engines as the source of motive power. Many commercial vehicles are equipped with diesel engines. Diesel engines are used successfully in several models of passenger car, too.

The vertical profile of the engine is reduced as much as possible to achieve a low hood (капот) line and thus an unobstructed view for the driver. Engines are rated (to rate – оценивать) for output by the number of cylinders, cubic-inch displacement (CID – объём), horsepower, and miles per gallon.

Single-plate or multiple-disk clutches transfer the engine output to the transmission, drive shaft, rear axle, and rear wheels. Conventional (обычный) four or five-speed transmission may be manual, semiautomatic, or automatic types, with overdrive available as an optional added speed. Among the numerous types of steering systems are reciprocating-ball, worm-and-sector, or worm-and-roller units. These systems provide vehicle stability in turns and directional control. Suspension (подвеска) coil springs, leaf-springs, air-suspension systems, or torsion bars are used in conjunction (совокупно) with shock absorbers to improve ride comfort and roadability (сцепление с дорогой). Service brakes may be drum-type on all four wheels, fixed- or floating-caliper types on front wheels, or a combination of both for mechanical manual operation or optional power assist. Parking brakes are usually integrated mechanically with rear-wheel drum service brakes, or they can be a separate drive shaft-type unit. 

 

Questions to be answered in writing:

1. What does the term automobile include?

2. What are the available models of passenger cars?

3. How are car engines rated?

4. What is the difference between service brakes and parking brakes?

 

Chemistry

The science of chemistry includes a study of the properties composition and structure of matter, the changes in structure and composition which matter undergoes, and the accompanying energy changes. Today the objective of a chemist is to aid in the interpretation of the universe. Much progress has been made toward meeting this objective, because much is known not only about the structure and composition of many materials on the Earth, but also about those of the planets, the satellites, the stars, and the materials of interstellar space.

The success of chemistry is largely attributed to the use of the scientific method, although not all the discoveries are made by planned research: many of them are made by trial and error and by accident. Nevertheless, the procedure of observation, classification, theorizing, and experimentation to test the theory, runs throughout this entire service. The huge problem of interpreting the universe is considerably simplified by breaking it down to smaller problems by classifying the great variety of materials in the universe into the two great entities, energy and matter. Energy can be classified as potential or kinetic energy, and can be broken down further into such forms of energy as mechanical, electrical, radiant, chemical, and nuclear. Matter can be classified in a number of different ways. One method is in terms of the physical state – solid, liquid, and gas; but probably the most useful method is in terms of (относительно) composition – elements, compounds, and mixtures.

A chemical element is a substance which cannot be broken down to simpler substances by chemical reactions. It is also defined as a substance made of one kind of building block (atom) only. There are only a few more than 100 elements known in the entire universe. A careful study of the elements has indicated that they can be classified into families or groups that further simplify the problem of learning about the universe. This classification is called the periodic table.

 

Questions to be answered in writing:

1. What does the science of chemistry study?

2. How are the discoveries in chemistry made?

3. Which are those entities embracing the great variety of materials in the universe?

4. How can the chemical elements be classified?

Geology

Earth sciences primarily deal with the history, chemical composition, physical characteristics, and dynamic behavior of solid Earth, fluid streams and oceans, and gaseous atmosphere. Because of the three-phase nature of the Earth system, Earth scientists generally have to consider the interaction of all the three phases – solid, liquid and gaseous – in the most problems that they investigate.

The geosciences (geology, geochemistry, and geophysics) are concerned with the solid part of the Earth system. Geology is largely a study of the nature of Earth materials and processes, and how these have interacted through time to leave a record of past events in existing Earthly features and materials. Hence, geologists study minerals, rocks, ore deposits, mineral fuels and fossils, and the long-term (долгосрочный) effects of terrestrial and oceanic waters and of the atmosphere. They also investigate present processes in order to explain past events.

Geophysics deals with the physical characteristics and dynamic behavior of the Earth system and thus with a diversity of natural phenomena. For example, earthquakes, volcanism, and mountain building throw light on structure and constitution of the Earth’s interior. Study of the magnetic field involves considering the Earth as a self-sustaining dynamo.

Man’s entry into the space age calls for a vast increase in knowledge of the environment through which vehicles and living things will go and return. Many aspects of the Earth’s atmosphere are now being studied intensively for the first time. Many important characteristics of the ocean were discovered, and with instruments and facilities developed during World War II, oceanographic research has been going on at a quickened pace.

Questions to be answered in writing:

1. Why is the nature of the Earth system considered as the three-phase one?

2. How can the geologists explain the past events?

3. Which one of the geosciences deals with studying a diversity of natural phenomena?

4. What are the factors accelerating the geo-research?

Mechanism and a Machine

Mechanisms are combinations of moving members such as links, gears, cams, belts, chains, and springs held in a rigid frame. In general a mechanism is defined as an apparatus for mechanically directing and transforming motions and energies of any kind.

A mechanism may be designed primarily for one or two purposes: 1) to transmit power greatly in excess of that required to overcome the frictional and dynamic requirements of the mechanism itself, or 2) to produce a desired movement of its parts. An example of the first is the slider crank mechanism in a reciprocating internal combustion engine. An example of the second is the mechanism, consisting of a link, gear sector, and pinion, that converts the movement of a pressure sensitive tube in a pressure gage to rotation of a pointer (стрелка) before the dial of the gage. 

A machine is an assemblage of one or more mechanisms whose primary purpose is to transform, transmit, and control energy, that is, to do work. Another definition of a machine would be a combination of bodies so arranged as to constrain the forces of nature to produce prescribed effects in response to prescribed inputs.

Before constructing a machine to fulfil the need, the engineer must thoroughly understand the application, and mentally modify and old machine or devise a new machine as required. He estimates a certain cost for the machine and a probable time for its construction. He envisions the materials required the equipment necessary for its manufacture and testing, and the final operation in meeting the original need. The engineer converts his thoughts into drawings and materials and follows through to its fabrication. 

Questions to be answered in writing:

1. What is a mechanism?

2. What are the purposes for designing a mechanism?

3. What is a machine?

4. What should an engineer take into consideration before constructing a machine?

 

Metallurgy

Metallurgy is the technology and science of metallic materials. Metallurgy as a branch of engineering is concerned with the production of metals and alloys, and their performance in service. Metallurgy has played an important role in the history of civilization. Metals were first produced more than 6000 years ago. Because only a few metals, principally gold, silver, copper, and meteoric iron, occur in the uncombined state in nature, and then only in small quantities, primitive metallurgists had to discover ways of extracting metals from their ores. Quite large-scale production of some metal was carried out in the Middle Ages in central and Northern Europe. Basic metallurgical skills were also developed in other parts of the world.

The scale of metalworking developed with the growth of industrial organizations. Today’s metallurgical plants supply metals and alloys to the manufacturing and construction industries in many forms, such as beams, plates, sheets, bars, wire, and castings. Rapidly developing technologies such as communications, nuclear power, and space exploration demand new techniques of metal production and processing.

The field of metallurgy may be divided into process metallurgy (production metallurgy, extractive metallurgy) and physical metallurgy. According to another system of classification, metallurgy comprises chemical metallurgy, mechanical metallurgy (metal processing and mechanical behavior in service), and physical metallurgy.

Metallurgy occupies a position of the juncture of physics, chemistry, mechanical and chemical engineering. It also borders electrical, civil, aeronautical, and nuclear engineering.

 

Questions to be answered in writing:

1. What is metallurgy?

2. How did metalworking develop?

3. What are the subdivisions of the metallurgy field?

4. What other fields and subjects does metallurgy border?

 

Mining

A unique feature of mining is that mineral deposits undergoing extraction are not renewable (невосполнимы) as are other natural resources. This depletability (способность истощаться) of mineral deposits not only requires that mining companies must periodically find new deposits and constantly improve their technology, but calls for conservational, industrial and political policies to serve the public interests. Depletion (истощение) means that the supplies of any particular mineral must be extracted from ever-lower-grade sources. Consciousness (сознание) of depletion causes many countries to be possessive about their mineral resources and jealous of their exploration by foreigners. Some would reduce the scale of domestic production and increase imports in order to extend the lives of domestic deposits.

Mining is divided into three basic methods: opencast, underground, and fluid mining. Opencast, or surface, mining is done either from pits or gouged out slopes or by strip mining, which involves extraction from a series of successive parallel trenches. Dredging is a type of strip mining, with digging done from barges. Hydraulic mining uses jets of water to excavate material.

Underground mining involves extraction from beneath (из-под) the surface, from depths as great as 10,000 ft, by any of several methods.

Fluid mining is extraction from natural brines, lakes, oceans, or underground waters. Most fluid mining is done by wells (скважина). A recent type of well mining is to wash insoluble material loose by underground jets and pump the slurry to the surface.

The activities of the mining industry begin with exploration, which has become a complicated, expensive, and highly technical task. After suitable deposits have been found, development of mining begins.

Questions to be answered in writing:

1. What does depletion of mineral deposits mean?

2. What are basic methods of mining?

3. What is dredging? Hydraulic mining?

4. What does the mining industry begin with?

             

Computer

Computer is a device that receives, processes, and presents information. The two basic types of computers are analog and digital.

The most prevalent computer is the simple mechanical analog computer, in which gears, levers, ratchets, and pawls perform mathematical operations. The two most common examples of the simple mechanical analog are the speedometer, and the watt-hour meter, used to measure accumulated electrical usage.

A digital computer uses symbolic representations of its variables. The arithmetic unit is constructed to follow the rules of one number systems. The digital computer uses individual discrete states to represent the digits of the number system chosen. The most prevalent special-purpose mechanical digital computer is the supermarket cash register. 

By using electronics, large general-purpose digital computers have been constructed. Frequently two or more computers are interconnected to form a computing system. They receive input in the form of preperforated punched cards, electrical signals from digital transolucers, or directly from input keyboards. They process these data in accordance with the rules of procedure and present the output as visual symbols on the printed page, characters on the face of a cathode-ray tube, signals on a communication line, or as input to a digital action device.

Typically, a general-purpose electronic digital computer operates on numbers using both decimal and binary number systems, and on symbolic data expressed in an alphabet.

Since 1950 the computer industry has grown into a multibillion dollar business employing hundreds of thousands of people to build or maintain computers and to program or operate them to perform commercial data-processing tasks or computations related to science or engineering.

 

Questions to be answered in writing:

1. What is computer?

2. What is the difference between digital and analog computer?

3. How does an electronic digital computer operate?

4. When did the computer industry grow into a great business?

 

Geology

Geology is one of several related subjects commonly grouped as geosciences. Geologists are concerned primarily with rocks that make up the outer part of the Earth. Understanding of these materials involves principles of physics and chemistry; geophysics and geochemistry, now important scientific disciplines become essential allies of geology in exploring the visible and deeper parts of the Earth. Study and mapping of surface forms are shared by geology with geodesy.

Known rocks are divided into three groups: igneous rocks, which have solidified from molten matter (magma); sedimentary rocks, made of fragments derived from preexisting rocks, of chemical precipitates, or of organic products; and metamorphic rocks derived from igneous or sedimentary rocks under conditions that brought about changes in mineral composition, texture, and internal structure.

Igneous rocks are formed as either extrusive or intrusive masses, that is, solidified at the Earth surface or deep underground. Both kinds range widely in composition; silica, the most abundant ingredient, varies from about 40 % to more than 75 %.

Sedimentary rocks. Bedrock exposed to air and moisture is broken into pieces, large and small, which are moved by running water and other agents to lower ground, and spread in sheets over river flood plains, lake bottoms, and sea floors. Dissolved matter is carried to seas and other water bodies, and some of it is precipitated chemically and by action of organisms. The material deposited in various ways becomes compacted and cemented into firm rock. The principal kinds of sedimentary rock are conglomerate, sandstone, shale, and dolomite.

Metamorphic rocks. These rocks have been developed from earlier igneous and sedimentary rocks by heat and pressure, most effectively in mountain zones. The common metamorphic rocks are in the two general classes: foliated (phyllite schist, and gneiss) and non-foliated (marble and quarcite).

 

Questions to be answered in writing:

1. What are geologists concerned with?

2. What are the main three groups of known rocks?

3. What kinds of sedimentary rocks are mentioned in the text?

4. Write out the examples of foliated and non-foliated rocks?

 

Food engineering

Food engineering is the technical discipline involved in food manufacturing and refined foods processing. It encompasses the practical application of food science in the efficient industrial production, packaging, storing, and physical distribution of nutritious and convenient foods that are uniform in quality, palatable and safe. Controlled biological, chemical, and physical processes and the planning, design, construction and operation of food factories and processes are usually involved.

Food engineering is the food industry equivalent of chemical engineering. Food science in industry converts agricultural materials into products that are marketable because they meet a consumer need and can be profitably sold at reasonable prices.

Food engineering is a vital link between farms and food stores in the lifeline of modern civilization. Without it, food would be available only at farms, in forms produced by nature, and only in season.

Because food engineering is applied in food manufacturing and refined food processing, it requires a knowledge of unit operations and processes such as cleaning, separating, mixing, forming, heat transfer, moisture removal, fermenting. These operations involve applied food science. That is why the food engineer must have a working knowledge of food chemistry, bacteriology, and industrial microbiology, as well as of physics, mathematics, and basic engineering disciplines.

Some outstanding achievements in food engineering include continuous bread-dough making and forming, manufacture of low-cost, high-quality prepared mixes, development of instant coffee and tea processes, dehydration of potatoes to produce the instant mashed product, production of precooked frozen convenience foods (полуфабрикаты), preservation of beer and wine by microspore filtration to remove yeasts and spoilage bacteria, aseptic filling of packages, and automatic control of processes.

Promising projects under development are preservation of foods by nuclear or electronic radiation, heat processing by high-frequency electromagnetic waves, and dehydration of fluid in foamed state.

 

Questions to be answered in writing:

1. What does food engineering include?

2. What may be considered as the equivalent of food engineering?

3. What working knowledge must the food engineer have?

4. What are the promising projects for developing the food engineering?

Small Hydroelectric

The high capital cost and environmental and social impact of large hydroelectric power plants (large dams) have made small hydroelectric power (SHP) an attractive alternative in recent years. Rather than building huge dams with lakes behind them that submerge entire towns or beautiful rivers and canyons, some countries have opted to generate electricity using small hydroelectric power plants. Switzerland has used the power of melting snow running off the Alps for years. According to a UNESCO survey conducted in China, about 800 of its 2,300 counties can be electrified using SHP and the government is giving preferential loans and tax exemptions to SHP developers.

Other countries are giving assistance for the development of small hydroelectric power. In Nepal, the government is providing loans and materials to SHP equipment manufacturers, and in Pakistan, the Ministry of Science and Technology has subsidized SHP construction. Similar efforts are occurring in the Andean region of Latin America and in Canada. All of these places are especially suited for small hydroelectric power generation because they have high mountain ranges. As the engineering and equipment required for SHP become more widespread, other countries with mountains and rivers should be able to take advantage of this clean source of electricity.

Questions to be answered in writing:

1. Why did SHP become an attractive alternative to large hydroelectric power plants?

2. How do the governments of different countries further (contribute to) the development of SHP?

3. Give an example (taken from the text or yours) of widespreading SHP?

4. Where the construction of SHP is more advantageous? 

Wind energy

The use of wind energy is growing faster than any other type of renewable energy because of improvements in wind turbine technology over the past 20 years. The best locations for wind as an energy source are coasts, mountains, and plains. Like solar rays, wind is also a form of intermittent renewable energy, available only about 30 percent of the time. Often, when the sun isn’t shining, the wind is blowing; so many users rely on wind turbines to complement solar panels.

Most of the world’s wind generation capacity is located in the United States, Denmark (the pioneer in wind generation), the Netherlands (famous for its use of windmills), Germany, and India. While wind generation of electricity is clean, some disadvantages include the noise of the blades of windmills and the appearance. A large wind farm on a hillside is clearly visible, in the same way that large arrays of solar panels are. People who rely on wind-generated electricity, however, may not mind the view of clean energy being created.

 

Questions to be answered in writing:

5. Why is the use of wind energy growing faster than other types of renewable energy?

2. What are the best locations for its using?

3. Where are most wind generation capacities located (in the world)?

4. What are the disadvantages of using the wind energy?

 

Bicycle

It is an indisputable fact that bicycles are an inexpensive and efficient means of personal transportation, especially for short trips and in densely populated areas. One example of a bicycling country is China. Decades ago, with a policy of mass producing inexpensive bicycles and building infrastructure for non-motorized traffic, Chinese authorities deliberately set out to provide affordable transportation to citizens. Today China has a higher number of bicycles per capita and a higher percentage of daily trips made by bicycle than any other country. 

The bicycle is a marvel of fuel efficiency. In terms of energy expended and distance covered, traveling by bicycle is far more economical than traveling by horse, motorcycle, or car, and even more economical than walking or running. Of course, the fuel of bicycle riders is the food they eat. An average cyclist can cover approximately five kilometers on 100 calories, the number of calories in a banana. One hundred calories’ worth of gasoline could take a light-weight car only 100 meters. In addition, to being incredibly fuel efficient, bicycles are environmentally friendly in other ways. For example, they generate no air or noise pollution and do not require huge paved roads or parking lots.

Cycling is not only good for the environment; it’s good for the rider. Riding a bike can provide an excellent physical workout. It exercises the major muscle groups (back and legs), increases cardiovascular fitness (heart and lungs), and improves blood circulation. It can provide these health benefits without intense straining or profuse sweating, and without the pounding of joints and risk of injury found in sports such as tennis, basketball, soccer, and running. The development of comfortable and lightweight bicycle helmets over the past 20 years has made the sport even safer.

 

Questions to be answered in writing:

1. What are the advantages of a bicycle as a mean of transportation?

2. What may be considered as a fuel for bicycle?

3. Why cycling is good for the environment and rider?

4. What makes the cycling safer?

 

Electro-ionizing laser

The 20th century has been called the age of the atom, the age of polymers, or the space age. It would be equally correct to call it the age of the laser. It is impossible to list all the jobs a laser can do. It has become a part of our life being used in various industries, medicine, biology, etc. it should be mentioned that all the methods we know of processing materials with lasers were suggested not long ago. Physicists knew of the tremendous capabilities of the laser beam, but they could not be realized until lasers of adequate capacity were developed. To make a laser really useful the radiation intensity had to be increased (since capacity determines productivity) and high beam efficiency created.

Creating highly effective laser is still one of the main problems of quantum electronics. In a gas laser all one has to do in order to increase the capacity is to increase the volume and the pressure of the gas. This sounds simple, but the doing of it is not. The best results were achieved with electro-ionizing laser (EIL) operating on carbon dioxide. They have found a wide field of application. EIL’s of some 10-kilowatt capacity can weld and cut metal; pulse EIL’s with radiation energy of 10 kilojoules and a pulse duration of 1/1,000,000,000th of second can heat plasma to nearly thermonuclear temperatures. Several other methods for building powerful gas lasers have been suggested and used.

Questions to be answered in writing:

1. How was the 20th century called and why?

2. What are the capabilities of the laser beam?

3. Where were the best results in using lasers achieved?

4. What types of lasers do you know?

New microcomputer

An entirely new microcomputer has been developed in our country. The microcomputer is equipped with an arithmetical logical device which carries pre-set programmes. Because of this the microcomputer can perform various logical functions. In other words, it possesses a solving field for various commands. It is comparatively easy to change commands or add new ones. The arithmetical logical device is known to be adjusted by computers of a higher level. The memory device based on semiconductors keeps information for several days, even with the power supply unplugged. In this case the microcomputer automatically switches over to the microaccumulator.

The new computer is very small in size and weight (25 kg), is resistant to temperature fluctuations, does not require special ventilation, is reliable and easy to operate. It can be used in computer control complexes as an information-processing unit and also as a built-in computer in various analysing and display devices. It receives data, calculates the optimum conditions and supplies signals for the control of technological processes. For example, in pressure-die casting the microcomputer receives information about the temperature in the furnace, the speed of the liquid metal movements, location of the various devices, etc. The computer processes the data and controls the casting, i.e. keeps the temperature and the pressure within required limits, and commands the beginning of the casting operation.

The programme is written by technicians, and the operator inserts the required data. The field of application of the new computer appears to be vast. It can analyse various substances in oil, gas, chemical and food industries, as well as soil and plants. It can also be used for processing information about conditions in the environment, for control of conveyors and other equipment.

Questions to be answered in writing:

1. Why can the microcomputer perform various functions?

2. How does this computer operate?

3. Who writes the programmes for microcomputer?

4. Where is it applied?

Airbus's advanced wing enters validation phase

First production applications could be realized within five years, possibly on A380

Airbus has begun the validation phase of its AWIATOR aerodynamic technology demonstrator programme and hopes to realize production applications in the second half of the decade. AWIATOR – aircraft wing with advanced technology operation – is one of several researches and development programmes that Airbus is undertaking which are partly funded by the European Com­mission as part of the Fifth Framework programme for R&D.

Focused on reducing aircraft wake, drag, noise and fuel consumption, it brings together 23 European manufacturers, universities and research institutes, as well as Israel Aircraft Industries (Flight International, 9-15 July 2002). Airbus executive vice-president engineering Alain Garcia says that the manufacturer is providing about 64 % of the R&D programme’s total budget of € 80 million ($ 87 million). Fifty percent of Airbus’s investment will be reimbursed by the EC. Garcia says that following input from divisions in France, Germany and the UK, the three-year validation process to examine integrative aspects of the proposed concepts is under way (осуществляется). “Tests will involve mapping aircraft performance at low and high speeds,” he says, using Airbus’s development A340-300 aircraft. Garcia says that ideas include “large winglets; nose-mounted turbulence sensors which are being looked at for the A380; wake vortex devices; mini trailing-edge devices to further improve the efficiency of the flaps; and sub-boundary layer vortex generators and optimized inner airbrakes to improve efficiency without diluting the air flow to the horizontal stabilizer”.

The target is to reduce drag by 5-7 % while cutting fuel consumption by 2 %. Garcia says that the A380 could be the first to benefit from AWIATOR, as initial applica­tions on the product line are expected within three to five years.

Questions to be answered in writing:

1. What is AWIATOR?

2. Who provided the R&D programme’s budget for AWIATOR?

3. How does Garcia describe the new Airbus’s model?

4. When are the first applications on the product line expected?

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 324.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...