Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Б) случай связанных (парных) выборок




Анализ двух выборок

  1. Параметрические критерии. a. Методы проверки выборки на нормальность b. Критерий Стьюдента (t-критерий) i. случай независимых выборок ii. случай связных (парных) выборок c. F-критерий Фишера 2. Непараметрические критерии 3. Критерий знаков (G-критерий) 4. Критерий (хи-квадрат) Следующей задачей статистического анализа, решаемой после определения основных (выборочных) характеристик и анализа одной выборки, является совместный анализ нескольких выборок. Важнейшим вопросом, возникающем при анализе двух выборок, является вопрос о наличии различий между выборками. Обычно для этого проводят проверку статистических гипотез о принадлежности обеих выборок одной генеральной совокупности или о равенстве средних. Если вид распределения или функция распределения выборки нам заданы, то в этом случае задача оценки различий двух групп независимых наблюдений может решаться с использованием параметрических критериевстатистики: либо кри­терия Стьюдента (t), если сравнение выборок ведется по сред­ним значениям (X и У), либо с использованием критерия Фишера (F), если сравнение выборок ведется по их дисперсиям. Использование параметрических критериев статистики без предварительной про­верки вида распределения может привести к определенным ошибкам в ходе проверки рабочей гипотезы. Для преодоления указанных трудностей в практике педагоги­ческих исследований следует использовать непараметрические критерии статистики, такие, как критерий знаков, двухвыборочный критерий Вилкоксона, критерий Ван дер Вардена, критерий Спирмена, выбор которых, хотя и не требует большого числа членов выборки и знаний, вида распределения, но все же зависит от целого ряда условий. Непараметрические критерии статистики- свободны от допущения о законе распределения выборок и базируются на предположении о независимости наблюдений. 6.1 Параметрические критерии В группу параметрических критериевметодов математической статистикивходят методы для вычисления описательных статистик, построения графиков на нормальность распределения, проверка гипотез о при­надлежности двух выборок одной совокупности. Эти методы основыва­ются на предположении о том, что распределение выборок подчиняется нормальному (гауссовому) закону распределения. Среди параметрических критериев статистики нами будут рассмотрены критерий Стьюдента и Фишера. 6.1.1 Методы проверки выборки на нормальность Чтобы определить, имеем ли мы дело с нормальным распределением, можно применять следующие методы: 1) в пределах осей можно нарисовать полигон частоты (эмпирическую функцию распределения) и кривую нормального распределения на основе данных исследования. Исследуя формы кривой нормального распределения и графика эмпирической функции распределения, можно выяснить те параметры, которыми последняя кривая отличается от первой; 2) вычисляется среднее, медиана и мода и на основе этого определяется отклонение от нормального распределения. Если мода, медиана и среднее арифметическое друг от друга значительно не отличаются, мы имеем дело с нормальным распределением. Если медиана значительно отличается от среднего, то мы имеем дело с асимметричной выборкой. 3) эксцесс кривой распределения должен быть равен 0. Кривые с положительным эксцессом значительно вертикальнее кривой нормального распределения. Кривые с отрицательным эксцессом являются более покатистыми по сравнению с кривой нормального распределения; 4) после определения среднего значения распределения частоты и стандартного oтклонения находят следующие четыре интервала распределения сравнивают их с действительными данными ряда: а) — к интервалу должно относиться около 25% частоты совокупности,   б) — к интервалу должно относиться около 50% частоты совокупности, в) — к интервалу должно относиться около 75% частоты совокупности, г) — к интервалу должно относиться около 100% частоты совокупности. 6.1.2 Критерий Стьюдента (t-критерий) Критерий позволяет найти вероятность того, что оба средних значения в выборке относятся к одной и той же совокупности. Данный критерий наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности». При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух неза­висимых, несвязанныхдвухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно. Во втором случае, когда одна и та же группа объектов порождает числовой матери­ал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными. а) случай независимых выборок Статистика критерия для случая несвязанных, независимых выборок равна: (1) где — средние арифметические в эксперименталь­ной и контрольной группах,   - стан­дартная ошибка разности средних арифметических. Находится из формулы:   (2) где n1 и n2 соответственно величины первой и второй выборки. Если n1=n2, то стандартная ошибка разности средних арифметических будет считаться по формуле:   (3) где n величина выборки. Подсчет числа степеней свободы осуществля­ется по формуле: k = n1 + n2 – 2. (4) При численном равенстве выборок k = 2n - 2. Далее необходимо срав­нить полученное значение tэмп с теоретическим значением t—рас­пределения Стьюдента (см. приложение к учеб­никам статистики). Если tэмп<tкрит, то гипотеза H0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Рассмотрим пример использования t-критерия Стьюдента для несвязных и неравных по численности выборок. Пример 1.В двух группах учащихся — экспериментальной и контрольной — получены следующие результаты по учеб­ному предмету (тестовые баллы; см. табл. 1). Таблица 1. Результаты эксперимента
Первая группа (экспериментальная) N1=11 человек Вторая группа (контрольная) N2=9 человек
12 14 13 16 11 9 13 15 15 18 14 13 9 11 10 7 6 8 10 11

Общее количество членов выборки: n1=11, n2=9.

Расчет средних арифметических: Хср=13,636; Yср=9,444

Стандартное отклонение: sx=2,460; sy=2,186

По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:

 

Считаем статистику критерия:

 

Сравниваем полученное в эксперименте значение t с табличным значением с учетом степеней свободы, равных по формуле (4) числу испытуемых минус два (18).

Табличное значение tкрит равняется 2,1 при допущении возможности риска сделать ошибочное сужде­ние в пяти случаях из ста (уровень значимости=5 % или 0,05).

Если полученное в эксперименте эмпирическое значение t превы­шает табличное, то есть основания принять альтернативную гипотезу (H1) о том, что учащиеся экспериментальной группы показывают в среднем более высокий уровень знаний. В эксперименте t=3,981, табличное t=2,10, 3,981>2,10, откуда следует вывод о преимуществе эксперимен­тального обучения.

Здесь могут возникнуть такие вопросы:

1. Что если полученное в опыте значение t окажется меньше табличного? Тогда надо принять нулевую гипотезу.

2. Доказано ли преимущество экспериментального метода? Не столько доказано, сколько показано, потому что с самого начала допускается риск ошибиться в пяти случаях из ста (р=0,05). Наш эксперимент мог быть одним из этих пяти случаев. Но 95% возможных случаев говорит в пользу альтернативной гипотезы, а это достаточно убедительный аргумент в статистическом доказательстве.

3. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной? Поменяем, например, местами, сделав

 

средней арифметической эксперимен­тальной группы, a

 

— контрольной:

 

Отсюда следует вывод, что новый метод пока не про­явил себя с хорошей стороны по разным, возможно, при­чинам. Поскольку абсолютное значение 3,9811>2,1, принимается вторая альтернативная гипотеза (Н2) о пре­имуществе традиционного метода.

б) случай связанных (парных) выборок

В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.

Вычисление значения t осуществляется по формуле:

(5)

где

— разности между соответствующими значениями переменной X и переменной У, а d - среднее этих разностей;

 

Sd вычисляется по следующей формуле:

(6)

Число степеней свободы k определяется по формуле k=n-1. Рассмотрим пример использования t-критерия Стьюдента для связных и, очевидно, равных по численности выборок.

Если tэмп<tкрит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 2. Изучался уровень ориентации учащихся на художественно-эстети­ческие ценности. С целью активизации формирования этой ориентации в экспериментальной группе проводились бе­седы, выставки детских рисунков, были организованы по­сещения музеев и картинных галерей, проведены встречи с музыкантами, художниками и др. Закономерно встает вопрос: какова эффективность проведенной работы? С целью проверки эффективности этой работы до начала эксперимента и после давался тест. Из методических со­ображений в таблице 2 приводятся результаты небольшо­го числа испытуемых.

Таблица 2. Результаты эксперимента

 

Ученики

(n=10)

Баллы

Вспомогательные расчеты

до начала экспери­мента (Х) в конце экспери­мента (У) d d2
Иванов 14 18 4 16
Новиков 20 19 -1 1
Сидоров 15 22 7 49
Пирогов 11 17 6 36
Агапов 16 24 8 64
Суворов 13 21 8 64
Рыжиков 16 25 9 81
Серов 19 26 7 49
Топоров 15 24 9 81
Быстров 9 15 6 36
сумма 148 211 63 477
Среднее 14,8 21,1    

Вначале произведем расчет по формуле:

 

Затем применим формулу (6), получим:

 

И, наконец, следует применить формулу (5). Получим:

 

Число степеней свободы: k=10-1=9 и по таблице При­ложения 1 находим tкрит =2.262, экспериментальное t=6,678, откуда следует возможность принятия альтерна­тивной гипотезы (H1) о достоверных различиях средних арифметических, т. е. делается вывод об эффективности экспериментального воздействия.

В терминах статистических гипотез полученный результат будет звучать так: на 5% уров­не гипотеза Н0 отклоняется и принимается гипотеза Н1 .

F — критерий Фишера

Критерий Фишера позволяет сравнивать величины выбороч­ных дисперсий двух независимых выборок. Для вычисления Fэмп нуж­но найти отношение дисперсий двух выборок, причем так, что­бы большая по величине дисперсия находилась бы в числителе, а меньшая – в знаменателе. Формула вычисления критерия Фи­шера такова:

 

(8)

где

 

- дисперсии первой и второй выборки соответственно.

 

Так как, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значе­ние Fэмп всегда будет больше или равно единице.

Чис­ло степеней свободы определяется также просто:

k1=nl - 1 для первой выборки (т.е. для той выборки, величина дисперсии которой больше) и k2=n2 - 1 для второй выборки.

В Приложе­нии 1 критические значения критерия Фишера находятся по величинам k1 (верхняя строчка таблицы) и k2 (левый столбец таблицы).

Если tэмп>tкрит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 3.В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос — есть ли различия в степени однородности показателей умственного развития между классами.

Решение. Для критерия Фишера необходимо сравнить дис­персии тестовых оценок в обоих классах. Резуль­таты тестирования представлены в таблице:

Таблица 3.

№№ учащихся Первый класс Второй класс
1 90 41
2 29 49
3 39 56
4 79 64
5 88 72
6 53 65
7 34 63
8 40 87
9 75 77
10 79 62
Суммы 606 636
Среднее 60,6 63,6

 

Рассчитав дисперсии для переменных X и Y, получаем:

sx2=572,83; sy2=174,04

Тогда по формуле (8) для расчета по F критерию Фишера находим:

 

По таблице из Приложения 1 для F критерия при степенях свободы в обоих случаях равных k=10 - 1 = 9 находим Fкрит=3,18 (<3.29), следовательно, в терминах статистических гипотез можно утвер­ждать, что Н0 (гипотеза о сходстве) может быть отвергнута на уровне 5%, а принимается в этом случае гипотеза Н1. Иcследователь может утверждать, что по степени однородности такого показа­теля, как умственное развитие, имеется различие между выбор­ками из двух классов.

Непараметрические критерии

Сравнивая на глазок (по процентным соотношениям) результаты до и после какого-либо воздействия, исследователь приходит к заключению, что если наблюдаются различия, то имеет место различие в сравниваемых выборках. Подобный подход категорически неприемлем, так как для процентов нельзя определить уровень достоверности в различиях. Проценты, взятые сами по себе, не дают возможности делать статистически достоверные выводы. Чтобы доказать эффективность какого-либо воздействия, необходимо выявить статистически значимую тенденцию в смещении (сдвиге) показателей. Для решения подобных задач исследователь может использовать ряд критериев различия. Ниже будет рассмотрены непараметрические критерии: критерий знаков и критерий хи-квадрат.










Последнее изменение этой страницы: 2018-04-11; просмотров: 280.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...