Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Нагрузка генератора, включенного на параллельную работу.Стр 1 из 7Следующая ⇒
ГЛАВА 21 Параллельная работа синхронных генераторов.
Включение генераторов на параллельную работу. На электрических станциях обычно устанавливают несколько синхронных генераторов, включаемых параллельно для совместной работы (рис. 21.1). Наличие нескольких генераторов вместо одного суммарной мощности дает преимущества, объясняемые теми же соображениями, которые были изложены применительно к параллельной работе трансформаторов (см. § 2.2). При включении синхронного генератора в сеть на параллельную работу необходимо соблюдать следующие условия: ЭДС генератора в момент подключения его к сети должна быть равна и противоположна по фазе напряжению сети ( ), частота ЭДС генератора должна быть равна частоте переменного напряжения в сети ; порядок следования фаз на выводах генератора должен быть таким же, что и на зажимах сети. Приведение генератора в состояние, удовлетворяющее всем указанным условиям, называют синхронизацией. Несоблюдение любого из условий синхронизации приводит к появлению в обмотке статора больших уравнительных токов, чрезмерное значение которых может явиться причиной аварии. Включить генератор в сеть с параллельно работающими генераторами можно или способом точной синхронизации, или способом самосинхронизации Способ точной синхронизации. Сущность этого способа состоит в том, что, прежде чем включить генератор в сеть, его приводят в состояние, удовлетворяющее всем вышеперечисленным условиям. Момент соблюдения этих условий, т. е. момент синхронизации, определяют прибором, называемым синхроноскопом. По конструкции синхроноскопы разделяют на стрелочные и ламповые. Рассмотрим процесс синхронизации генераторов с применением лампового синхроноскопа, который состоит из трех ламп 1, 2, 3, расположенных в вершинах равностороннего треугольника. Рис. 21.1. Включение синхронных генераторов на параллельную работу: Г1 - Г4 – синхронные генераторы, ПД1 -ПД4 - приводные двигатели
При включении ламп по схеме «на погасание» (рис. 21.2, а) момент синхронизации соответствует одновременному погасанию всех ламп. Предположим, что звезда ЭДС генератора вращается с угловой частотой , превышающей угловую частоту вращения звезды напряжений сети . В этом случае напряжение на лампах определяется геометрической суммой + ; + ; + (рис. 21.2, б). В момент совпадения векторов звезды ЭДС с векторами звезды напряжений эта сумма достигает наибольшего значения, при этом лампы горят с наибольшим накалом (напряжение на лампах равно удвоенному напряжению сети). В последующие моменты времени звезда ЭДС обгоняет звезду напряжений, и напряжение на лампах уменьшается. В момент синхронизации векторы ЭДС и напряжений занимают положение, при котором , т.е. = 0, и все три лампы одновременно гаснут (рис. 21.2, в). При большой разности угловых частот и лампы вспыхивают часто. Изменяя частоту вращения первичного двигателя, добиваются равенства , о чем будет свидетельствовать погасание ламп на длительное время. В этот момент и следует замкнуть рубильник, после чего генератор окажется подключенным к сети.
Рис. 21.2. Ламповый синхроноскоп
Способ самосинхронизации. Ротор невозбужденного генератора приводят во вращение первичным двигателем до частоты вращения, отличающейся от синхронной не более чем на 2—5%, затем генератор подключают к сети. Для того чтобы избежать перенапряжений в обмотке ротора в момент подключения генератора к сети, ее замыкают на некоторое активное Сопротивление. Так как в момент подключения генератора к сети его ЭДС равна нулю (генератор не возбужден), то под действием напряжения сети в обмотке статора наблюдается резкий бросок тока, превышающий номинальное значение тока генератора. Вслед за включением обмотки статора в сеть подключают обмотку возбуждения к источнику постоянного тока и синхронный генератор под действием электромагнитного момента, действующего на его ротор, втягивается в синхронизм, т. е. частота вращения ротора становится синхронной. При этом ток статора быстро уменьшается. При самосинхронизации в генераторе протекают сложные электромеханические переходные процессы, вызывающие значительные механические воздействия на обмотки, подшипники и муфту, соединяющую генератор с турбиной. Влияние этих воздействий на надежность генератора учитывается при проектировании синхронных генераторов. Способ самосинхронизации (грубой синхронизации) обычно применяют в генераторах при их частых включениях. Этот способ прост и легко автоматизируется.
Нагрузка генератора, включенного на параллельную работу. Обычно совместно на одну сеть работают несколько синхронных генераторов и мощность любого из них намного меньше суммарной мощности всех остальных генераторов. Будем считать, что синхронный генератор подключают на параллельную работу сдругими генераторами, суммарная мощность которых настолько велика по сравнению с мощностью подключаемого генератора, что при любых изменениях параметров этого генератора напряжение сети и ее частота остаются неизменными. Рис. 21.3. Векторные диаграммы синхронного генератора, включённого на параллельную работу в сеть большой мощности: а – при работе без нагрузки; б – при работе с нагрузкой
После подключения генератора в сеть при соблюдении всех условий синхронизации его ЭДС равна по значению и противоположна по фазе напряжению сети (рис. 21.3, а), поэтому ток в цепи генератора равен нулю, т. е. генератор работает без нагрузки. Механическая мощность приводного двигателя P1 в этом случае полностью затрачивается на покрытие потерь х. х.: . Отсутствие тока в обмотке статора синхронного генератора 0) приводит к тому, что обмотка статора не создает вращающегося магнитного поля и в генераторе действует лишь магнитное поле возбуждения, вращающееся вместе с ротором с угловой частотой , но не создающее электромагнитного момента.
Рис. 21.3. К понятию об электромагнитном моменте синхронного генератора.
Если же увеличить вращающий момент приводного двигателя , то ротор машины, получив некоторое ускорение, сместится относительно своего первоначального положения на угол в направлении вращения. На такой же угол окажется сдвинутым вектор ЭДС генератора относительно своего положения, соответствующего режиму х. х. генератора (рис. 21.3, б). В результате в цепи статора появится результирующая ЭДС , которая создаст в цепи обмотки статора генератора ток I1. Если пренебречь активным сопротивлением обмотки статора и считать сопротивление этой обмотки чисто индуктивным, то ток , отстает по фазе от на угол 90° (рис. 21.3, б) и отстает по фазе от ЭДС на угол . Ток I1 создает магнитное поле, вращающееся синхронно с ротором и создающее вместе с полем ротора результирующее магнитное поле синхронной машины. Ось этого результирующего поля d'—d' не совпадает с продольной осью полюсов ротора d – d: в синхронном генераторе ось полюсов ротора d - d опережает ось результирующего поля машины d’-d’ на угол (рис. 21.4, а). Известно, что разноименные магнитные полюсы взаимно притягиваются, поэтому между намагниченными полюсами ротора и неявно выраженными полюсами вращающегося поля статора возникают силы магнитного притяжения (рис. 21.4, б). Вектор это и силы на каждом полюсе ротора, направленный под углом к оси полюса, имеет две составляющие: - нормальная составляющая, направленная по оси полюсов, и — тангенциальная составляющая, направленная перпендикулярно оси полюсов ротора. Совокупность тангенциальных составляющих F1 на всех полюсах ротора создает на роторе синхронного генератора электромагнитный момент, направленный встречно вращающемуся магнитному полю: , (21.1) где D2 — диаметр ротора. Из полученного выражения следует, что электромагнитный момент синхронной машины является синусоидальной функцией угла и может быть представлен выражением , (21.2) где Мmax — максимальное значение электромагнитного момента, соответствующее значению угла = 90 эл. град. Электромагнитный момент М, возникающий на роторе генератора направлен встречно вращающему моменту приводного двигателя , т. е. он является тормозящим моментом. На преодоление этого момента затрачивается часть мощности приводного двигателя, которая представляет собой электромагнитную мощность , (21.3) где — угловая частота вращения ротора. Таким образом, с появлением тока I1 в обмотке статора синхронного генератора, работающего параллельно с сетью, генератор получает электрическую нагрузку, а приводной двигатель (турбина, дизельный двигатель и т. п.) получает дополнительную механическую нагрузку. При этом механическая мощность приводного двигателя расходуется не только на покрытие потерь х. х. генератора , но и частично преобразуется в электромагнитную мощность генератора Рэм, т. е. (21.4) Следовательно, электромагнитная мощность синхронного ч тора представляет собой электрическую активную мощность, преобразованную из части механической мощности приводного двигателя:
Что же касается активной мощности на выходе синхронного генератора , отдаваемой генератором в сеть, т. е.
то она меньше электромагнитной мощности Рэм на значение, равное сумме электрических потерь в обмотке статора и добавочных потерь при нагрузке . (21.5) Следовательно, мощность на выходе синхронного генератора, (активная нагрузка) при его параллельной работе с сетью регулируется изменением вращающего момента приводного двигателя: , где — угловая синхронная скорость вращения ротора синхронной машины, рад/с. Если все слагаемые уравнения (21.4) разделить на угловую частоту , то получим уравнение моментов . (21.6) Из этого уравнения следует, что вращающий момент , развиваемый приводным двигателем на валу генератора, равен сумме противодействующих моментов: момента х. х. , обусловленного потерями х. х. и электромагнитного момента М, обусловленного нагрузкой генератора. Момент х. х. для данного генератора постоянен ( = соnst), поэтому нагрузка синхронного генератора возможна лишь за счет вращающего момента приводного двигателя, когда его значение превышает момент х. х., т. е. при . |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 415. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |