Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Принцип действия синхронного генератора




ОБЩИЕ ВОПРОСЫ ТЕОРИИ БЕСКОЛЛЕКТОРНЫХ МАШИН

 Принцип действия бесколлекторных машин переменного тока

 Принцип выполнения обмоток статора

 Основные типы обмоток статора

Магнитодвижущая сила обмоток статора

 

 

Электрические машины пере­менного тока составляют ос­нову современной электроэнергетики, как в сфере производства, так и в сфере потребления электрической энергии. За небольшим ис­ключением все эти машины являются бесколлекторными. Существует два вида бесколлекторных машин переменно­го тока: асинхронные и син­хронные машины. Отличаясь рабочими свойствами, эти машины имеют конструктив­ное сходство, и в основе их теории лежат некоторые об­щие вопросы, касающиеся процессов и явлений, связан­ных с рабочей обмоткой — обмоткой статора. Поэтому, прежде чем перейти к под­робному изучению асинхрон­ных и синхронных машин, це­лесообразно рассмотреть общие вопросы теории этих машин. Как асинхронные, так и синхронные машины обла­дают свойством обратимости (см. § В.2), т. е. каждая из них может работать как в режиме генератора, так и в режиме двигателя. Однако первона­чальное знакомство с этими машинами полезно начать с рассмотрения принципа дей­ствия синхронного генератора и принципа действия асин­хронного двигателя. Это даст возможность получить необ­ходимое на данном этапе изучения представление об устройстве этих машин и про­исходящих в них электромаг­нитных процессах. Данный раздел посвящен изучению принципа действия бескол­лекторных машин переменно­го тока в основных их режи­мах, устройства обмоток статоров этих машин и про­цесса наведения ЭДС и МДС в них.

 

 

ГЛАВА 6

• Принцип действия бесколлекторных машин переменного тока

Принцип действия синхронного генератора

Для изучения принципа действия синхронного генератора воспользуемся упрощенной моделью синхронной машины (рис. 6.1). Неподвижная часть машины, называемая статором,представляет собой полый шихтованный цилиндр 1(сердечник статора) с двумя продольными пазами на внутренней поверх­ности. В этих пазах расположены стороны витка 2, являющегося обмоткой статора. Во внутренней полости сердечника статора расположена вращаю­щаяся часть машины — ротор, представляющий собой постоянный магнит 4 с полюсами N и S, за­крепленный на валу 3. Вал ротора посредством ре­менной передачи механически связан с приводным двигателем (на рисунке не показан). В реальном синхронном генераторе в качестве приводного дви­гателя может быть использован двигатель внутрен­него сгорания либо турбина. Под действием вра­щающего момента приводного двигателя ротор генератора вращается с частотой n1против часовой стрелки. При этом в обмотке статора в соответствии с явлением электромагнитной индукции наводится ЭДС, направление которой показано на рисунке стрелками. Так как обмотка статора замкнута на на­грузку Z, то в цепи этой обмотки появится ток i.

В процессе вращения ротора магнитное поле по­стоянного магнита также вращается с частотой n1, а поэтому каждый из проводников обмотки статора попеременно оказывается то в зоне северного (N) магнитного полюса, то в зоне южного (S) магнитно­го полюса. При этом каждая смена полюсов сопро­вождается изменением направления ЭДС в обмотке статора. Таким образом, в обмотке статора синхрон­ного генератора наводится переменная ЭДС, а по­этому ток i в этой обмотке и в нагрузке Z также пе­ременный.

Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе (В)

е = B 2 l  = B  2 l π D1 n1 / 60    (6.1)

где B  — магнитная индукция в воздушном зазоре между сердеч­ником статора и полюсами ротора, Тл; l — активная длина одной пазовой стороны обмотки статора, м;  = π D1 n1 /60 — скорость движения полюсов ротора относительно статора, м/с; D1— внут­ренний диаметр сердечника статора, м.

Эта формула показывает, что при неизменной частоте вращения ротора форма кривой

 

Рис. 6.1. Упрощенная модель синхронного генератора

 

переменной ЭДС обмотки якоря опреде­ляется исключительно законом распределения магнитной индукции B , в зазоре. Если бы график магнитной индукции в зазора представлял собой синусоиду (B = Вmax sin α), то ЭДС генератора была бы синусоидальной. Однако получить синусоидальное распределение индукции в зазоре практически невозможно. Так, если воздушный зазор  постоянен (рис. 6.2), то магнитная индукция B , в воздушном зазоре распределяется по трапецеидальному закону (кривая 7), а, следовательно, и график ЭДС генератора представляет собой трапецеидальную кривую. Если края полюсов скосим так, чтобы зазор на краях полюсных наконечников был равен max (как это показано на рис. 6.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (кривая 2), а следовательно, и график ЭДС, наведенной в обмотке генератора, приблизится к синусоиде.

Частота ЭДС синхронного генератора f1 (Гц) прямо пропорциональна частоте вращения ротора n1 (об/мин), которую принято называть синхронной частотой вращения:

f1 = pn1/60           (6.2)

Здесь р — число пар полюсов; в рассматриваемом генераторе два полюса, т. е. р = 1.

Для получения промышленной частоты ЭДС (50 Гц) ротор та­кого генератора необходимо вращать с частотой n1 = 3000 об/мин, тогда f1 = 1 3000/60 = 50 Гц.

Постоянные магниты на роторе применяются лишь в синхронных генераторах весьма малой мощности (см. § 23.1), в боль­шинстве же синхронных генераторов для получения возбуждающего магнитного поля применяют обмотку возбуждения, располагаемую на роторе. Эта обмотка подключается к источнику постоянного тока через скользящие контакты, осуществляемые посредством двух контактных колец, располагаемых на валу и

 

 

 

 

Рис. 6.2. Графики распределения магнитной индукции                                                                в воздушном зазоре синхронного генератора

 

изолированных от вала и друг от друга, и двух неподвижных щеток (рис. 6.3).

Как уже отмечалось, привод - двигатель (ПД) приводит во вращение ротор синхронного      

генератора с синхронной частотой n1 при этом магнитное поле ротора также вращается с частотой n1  и индуцирует в трехфазной обмотке статора переменные ЭДС ЕА, ЕВ, ЕС, которые, будучи одинаковыми по значению и сдвинутыми фазе друг относительно друг друга на  периода (120 эл. град), образуют трехфазную симметричную систему ЭДС.

С подключением нагрузки в фазах обмотки статора появляются токи IА, IB, IC. При этом

трехфазная обмотка ста­тора создает вращаю­щееся магнитное поле. Частота вращения этого поля равна частоте вра­щения ротора генерато­ра (об/мин):

n1 = f160/p.     (6.3)

Таким образом, в синхронном генераторе поле статора и ротор вращаются синхронно, отсюда и название — синхронные машины.

 

Рис. 6.3. Электромагнитная схема син­хронного генератора










Последнее изменение этой страницы: 2018-04-12; просмотров: 362.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...