![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Рефлекторная регуляция дыхания. Рефлекс Геринга-Брейера. Механизм первого вдоха новорожденного.
Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний – эпизодические и постоянные. К постоянным относятся три вида: 1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса); 2) от проприорецепторов дыхательных мышц; 3) от нервных окончаний растяжений легочной ткани. В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде. Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов: 1) инспираторно-тормозные; 2) экспираторно-облегчающие; 3) парадоксальный эффект Хеда. При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется. Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается. Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох. К эпизодическим рефлекторным влияниям относятся: 1) импульсы от ирритарных рецепторов легких; 2) влияния с юкстаальвеолярных рецепторов; 3) влияния со слизистой оболочки дыхательных путей; 4) влияния от рецепторов кожи. Ирритарные рецепторырасположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2–3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель. Юкстаальвеолярные рецепторынаходятся в интерстиции. Они реагируют на появление химических веществ – серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии). При сильном раздражении слизистой оболочки дыхательных путейпроисходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей – кашель. На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания. При активации ноцецепторовсначала наблюдается остановка дыхания, а затем происходит постепенное учащение. Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений. При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот. Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.
Влияние мышечной деятельности на дыхание. При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15—20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2, а из организма выводится CO2. Каждый человек имеет индивидуальные показатели внешнего дыхания. В норме частота дыхания варьирует от 16 до 25 в минуту, а дыхательный объем — от 2,5 до 0,5 л. При мышечной нагрузке разной мощности легочная вентиляция, как правило, пропорциональна интенсивности выполняемой работы и потреблению О2 тканями организма. У нетренированного человека при максимальной мышечной работе минутный объем дыхания не превышает 80 л*мин-1, а у тренированного может быть 120—150 л*мин-1 и выше. Кратковременное произвольное увеличение вентиляции может составлять 150—200 л*мин-1. В момент начала мышечной работы вентиляция быстро увеличивается, однако в начальный период работы не происходит каких-либо существенных изменений рН и газового состава артериальной и смешанной венозной крови. Следовательно, в возникновении гиперпноэ в начале физической работы не участвуют периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра, чувствительные к гипоксии и к понижению рН внеклеточной жидкости мозга. Уровень вентиляции в первые секунды мышечной активности регулируется сигналами, которые поступают к дыхательному центру из гипоталамуса, мозжечка, лимбической системы и двигательной зоны коры большого мозга. Одновременно активность нейронов дыхательного центра усиливается раздражением проприоцепторов работающих мышц. Довольно быстро первоначальный резкий прирост вентиляции легких сменяется ее плавным подъемом до достаточно устойчивого состояния, или так называемого плато. В период «плато», или стабилизации вентиляции легких, происходит снижение Рао2 и повышение Расо2 крови, усиливается транспорт газов через аэрогематический барьер, начинают возбуждаться периферические и центральные хеморецепторы. В этот период к нейрогенным стимулам дыхательного центра присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции в процессе выполняемой работы. При тяжелой физической работе на уровень вентиляции будут влиять также повышение температуры тела, концентрация катехоламинов, артериальная гипоксия и индивидуально лимитирующие факторы биомеханики дыхания. Состояние «плато» наступает в среднем через 30 с после начала работы или изменения интенсивности уже выполняемой работы. В соответствии с энергетической оптимизацией дыхательного цикла повышение вентиляции при физической нагрузке происходит за счет различного соотношения частоты и глубины дыхания. При очень высокой легочной вентиляции поглощение О2 дыхательными мышцами сильно возрастает. Это обстоятельство ограничивает возможность выполнять предельную физическую нагрузку. Окончание работы вызывает быстрое снижение вентиляции легких до некоторой величины, после которой происходит медленное восстановление дыхания до нормы.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 528. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |