Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференциация и интеграция наук




Развитие науки характеризуется диалектическим взаимодействием двух противоположных процессов — дифференциацией (выделением новых научных дисциплин) и интеграцией (синтезом знания, объединением ряда наук — чаще всего в дисциплины, находящиеся на их «стыке»). На одних этапах развития науки преобладает дифференциация (особенно в период возникновения науки в целом и отдельных наук), на других — их интеграция, это характерно для современной науки.

Дифференциация наук является закономерным следствием быстрого увеличения и усложнения знаний. Она неизбежно ведет к специализации и разделению научного труда. Последние имеют как позитивные стороны (возможность углубленного изучения явлений, повышение производительности труда ученых), так и отрицательные (особенно «потери связи целого», сужение кругозора — иногда до «профессионального кретинизма»). Одновременно с процессом дифференциации происходит и процесс интеграции — объединения, взаимопроникновения, синтеза наук и научных дисциплин, объединение их (и их методов) в единое целое, стирание граней между ними. Это особенно характерно для современной науки, где сегодня бурно развиваются такие синтетические, общенаучные области научного знания, как кибернетика, синергетика и др., строятся такие интегративные картины мира, как естественнонаучная, общенаучная, философская (ибо философия также выполняет интегративную функцию в научном познании).

Взаимодействие наук и их методов

Разделение науки на отдельные области было обусловлено различием природы вещей, закономерностей, которым последние подчиняются. Различные науки и научные дисциплины развиваются не независимо, а в связи друг с другом, взаимодействуя по разным направлениям. Одно из них — это использование данной наукой знаний, полученных другими науками.

Один из важных путей взаимодействия наук — это взаимообмен методами и приемами исследования, т. е. применение методов одних наук в других. Особенно плодотворным оказалось применение методов физики и химии к изучению в биологии живого вещества, сущность и специфика которого одними только этими методами, однако, не была «уловлена». Для этого нужны были свои собственные — биологические методы и приемы их исследования.

Следует иметь в виду, что взаимодействие наук и их методов затрудняется неравномерностью развития различных научных областей и дисциплин. Методологический плюрализм — характерная особенность современной науки, благодаря которой создаются необходимые условия для более полного и глубокого раскрытия сущности, законов качественно различных явлений реальной действительности.

Наиболее быстрого роста и важных открытий сейчас следует ожидать как раз на участках «стыка», взаимопроникновения наук и взаимного обогащения их методами и приемами исследования. Этот процесс объединения усилий различных наук для решения важных практических задач получает все большее развитие. Это магистральный путь формирования «единой науки будущего».

Углубление и расширение процессов математизации и компьютеризации

Одна из важных закономерностей развития науки — усиление и нарастание сложности и абстрактности научного знания, углубление и расширение процессов математизации и компьютеризации науки как базы новых информационных технологий, обеспечивающих совершенствование форм взаимодействия в научном сообществе.

Сущность процесса математизации, собственно, и заключается в применении количественных понятий и формальных методов математики к качественно разнообразному содержанию частных наук. Последние должны быть достаточно развитыми, зрелыми в теоретическом отношении, осознать в достаточной мере единство качественного многообразия изучаемых ими явлений. Именно этим обстоятельством, прежде всего, определяются возможности математизации данной науки.

Чем сложнее данное явление, чем более высокой форме движения материи оно принадлежит, тем труднее оно поддается изучению количественными методами, точной математической обработке законов своего движения. Так, невозможно математически точно выразить рост сознательности человека, степень развития его умственных способностей, эстетические достоинства художественных произведений и т. п.

Применение математических методов в науке и технике за последнее время значительно расширилось, углубилось, проникло в считавшиеся ранее недоступными сферы. Эффективность применения этих методов зависит как от специфики данной науки, степени ее теоретической зрелости, так и от совершенствования самого математического аппарата.

Абстрактные формулы и математический аппарат не должны заслонять (а тем более, вытеснять) реальное содержание изучаемых процессов. Применение математики нельзя превращать в простую игру формул, за которой не стоит объективная действительность. Вот почему всякая поспешность в математизации, игнорирование качественного анализа явлений, их тщательного исследования средствами и методами конкретных наук ничего, кроме вреда, принести не могут. Рассматривая проблему формы и содержания, В, Гейзенберг, в частности, писал: «Математика — это форма, в которой мы выражаем наше понимание природы, но не содержание. Когда в современной науке переоценивают формальный элемент, совершают ошибку и, притом, очень важную»[20].

В настоящее время одним из основных инструментов математизации научно-технического прогресса становится математическое моделирование. Его сущность и главное преимущество состоит в замене исходного объекта соответствующей математической моделью и в дальнейшем ее изучении (экспериментированию с нею) на ЭВМ с помощью вычислительно-логических алгоритмов.










Последнее изменение этой страницы: 2018-04-12; просмотров: 332.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...