Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Неоклассическая модель роста Р. Солоу — Т. Свана.
Уравнение сбалансированного роста.Модель устойчивого экономического роста независимо друг от друга предложили в 1956 г. профессор МТИ Роберт Солоу (р. 1924) и профессор Австралийского национального университета в Канберре Тревор Сван(1918 — 1989). Оба они были, также как Харрод и Домар, неокейнсианцами; Сван участвовал в создании Белой книги полной занятости, составленной группой экономистов по заказу правительственного кабинета Лейбористской партии Австралии; Солоу на протяжении десятилетий тесно сотрудничал с П. Самуэльсоном. Но их модель получила название неоклассической,поскольку включила неоклассическую предпосылку гибкости (а не жёсткости) пропорций между применяемыми количественными показателями труда и капитала. В статье «Вклад в теорию экономического роста»[97] Р. Солоу доказывал, что при гибкости пропорций труда и капитала и постоянной отдаче от масштаба невозможно противоречие между естественным и гарантированным темпами роста; система может приспособиться к любому темпу роста рабочей силы и в итоге приблизиться к состоянию пропорционального расширения. Приняв, как и в модели Харрода—Домара, неизменный темп роста населения и постоянство нормы сбережений s ( откуда I = sY), Солоу включил в свою модель линейно-однородную производственную функцию Y = F{K,L)}, откуда (если разделить все члены уравнения на L и обозначить доход на одного работника Y/L через y, акапиталоинтенсивность K/L через k) можно получить y= L F( k,1) = L f (k). Темп прироста k тогда можно записать как dk / k = d K / K — d L /L = sY/ K — n = s — L / K f (k) — n или dk’ = sf (k) — nk Это так называемое «фундаментальное уравнение» Солоу словами формулируется следующим образом: прирост капиталовооружённости одного работника — это то, что осталось от удельных инвестиций (сбережений) после того, как удалось обеспечить капитальными благами всех дополнительных работников. Если sf(k) = nk, то капиталовооруженность остается прежней (dk = 0), т.е. экономика растет без каких-либо изменений в соотношении между факторами. Это и есть сбалансированный рост, траектория которого в модели Солоу, в противоположность модели Харрода—Домара, является устойчивой. Прямая (n+d)k на графике (рис. 23.2) показывает, сколько каждый работник В модели Солоу норма сбережений s имеет значение только до выхода экономики на траекторию устойчивого развития: чем больше величина s, тем выше график sk и соответственно уровень k0. Но как только рост стал сбалансированным, его дальнейший темп зависит только от роста населения и технологического прогресса. Рис. 23.2. Модель роста Солоу.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 430. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |