Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Мировые климатические ресурсы




Климатическими ресурсами называют неисчерпаемые природные ресурсы, включающие в себя солнечную энергию, влагу и энергию ветра. Их не потребляют непосредственно в материальной и нематериальной деятельности люди, не уничтожают в процессе использования, но они могут ухудшаться (загрязняться) или улучшаться. Климатическими их называют потому, что они определяются прежде всего теми или иными особенностями климата.

Солнечная энергия – самый крупный энергетический источник на Земле. В научной литературе приводятся многочисленные, хотя и довольно сильно различающиеся, оценки мощности солнечной радиации, которые к тому же выражаются в разных единицах измерения. По одному из таких расчетов, годовая солнечная радиация составляет 1,5– 1022 Дж, или 134-1019ккал, или 178,6-1012 кВт, или 1,56 1018 кВт • ч. Это количество в 20 тыс. раз превышает современное мировое потребление энергии.

Однако значительная часть солнечной энергии не доходит до земной поверхности, а отражается атмосферой. В результате поверхности суши и Мирового океана достигает радиация, измеряемая в 1014 кВт, или 105 млрд кВт-ч (0,16 кВт на 1 км2 поверхности суши и Мирового океана). Но, конечно, только очень небольшая ее часть может быть практически использована. Академик М. А. Стырикович оценивал технический потенциал солнечной энергии «всего» в 5 млрд тут в год, а практически возможный для реализации – в 0, млрд тут. Едва ли не главная причина подобной ситуации – слабая плотность солнечной энергии.

Однако выше говорилось о средних величинах. Доказано, что в высоких широтах Земли плотность солнечной энергии составляет 80– 130 Вт/м2, в умеренном поясе – 130–210, а в пустынях тропического пояса – 210–250 Вт/м2. Это означает, что наиболее благоприятные условия для использования солнечной энергии существуют в развивающихся странах, расположенных в аридном поясе, в Японии, Израиле, Австралии, в отдельных районах США (Флорида, Калифорния). В СНГ в районах, благоприятных для этого, живет примерно 130 млн человек, в том числе 60 млн в сельской местности.

Ветровую энергию Земли также оценивают по-разному. На 14-й сессии МИРЭК в 1989 г. она была оценена в 300 млрд кВт-ч в год. Но для технического освоения из этого количества пригодно только 1,5 %. Главное препятствие для него – рассеянность и непостоянство ветровой энергии. Однако на Земле есть и такие районы, где ветры дуют с достаточными постоянством и силой. Примерами подобных районов могут служить побережья Северного, Балтийского, арктических морей.

Одной из разновидностей климатических ресурсов можно считать агроклиматические ресурсы, т. е. ресурсы климата, оцениваемые с позиций жизнедеятельности сельскохозяйственных культур. К числу факторов – сизни этих культур обычно относят воздух, свет, тепло, влагу и питательные вещества.

Воздух – это естественная смесь газов, составляющих атмосферу Земли. У земной поверхности сухой воздух состоит главным образом из азота (78 % общего объема), кислорода (21 %), а также (в небольших количествах) аргона, углекислого и некоторых других газов. Из них для жизнедеятельности живых организмов наибольшее значение имеют кислород, азот и углекислый газ. Понятно, что воздух относится к категории неисчерпаемых ресурсов. Однако с ним тоже связаны проблемы, широко обсуждаемые в географической литературе.

Прежде всего это проблема – как это ни парадоксально звучит – «исчерпания» содержащегося в воздухе и необходимого всему живому кислорода. Считается, что до середины XIX в. содержание кислорода в атмосфере было относительно стабильным, а поглощение его при окислительных процессах компенсировалось фотосинтезом. Но затем началась постепенная его убыль – прежде всего в результате сжигания органического топлива и распространения некоторых технологических процессов. В наши дни только сжигание топлива приводит к расходованию 10 млрд т свободного кислорода в год. Легковой автомобиль на каждые 100 км пробега расходует годовой кислородный «паек» одного человека, а все автомобили забирают столько кислорода, сколько его хватило бы для 5 млрд человек в течение года. Лишь за один трансатлантический рейс реактивный лайнер сжигает 35 т кислорода. Эксперты ООН подсчитали, что в наши дни на планете ежегодно потребляют такое количество кислорода, которого хватило бы для дыхания 40–50 млрд человек. Только за последние 50 лет было израсходовано более 250 млрд т кислорода. Это уже привело к уменьшению его концентрации в атмосфере на 0,02 %.

Конечно, такое уменьшение пока практически неощутимо, поскольку человеческий организм чувствителен к снижению концентрации кислорода более, чем на 1 %. Однако, по расчетам известного ученого-климатолога Ф. Ф. Давитая, при ежегодном увеличении безвозвратно расходуемого кислорода на 1 %, 2/3 его общего запаса в атмосфере могут быть исчерпаны за 700 лет, а при ежегодном росте на 5 % – за 180 лет. Впрочем, некоторые другие исследователи приходят к выводу о том, что уменьшение запаса свободного кислорода не представляет и не будет представлять собой серьезной опасности для человечества.

Свет (солнечная радиация) служит главным источником энергии для всех физико-географических процессов, протекающих на Земле. Обычно световая энергия выражается в тепловых единицах – калориях из расчета на единицу площади за определенное время. Однако при этом важно учитывать соотношение видимого света и невидимого излучения Солнца, прямой и рассеянной, отраженной и поглощенной солнечной радиации, ее интенсивность.

С агроклиматической точки зрения особенно важна та часть солнечного спектра, которая непосредственно участвует в фотосинтезе, ее называют фотосинтетически активной радиацией. Важно также учитывать длину светового дня, с которой связано подразделение сельскохозяйственных культур на три категории: растений короткого дня (например, хлопчатник, кукуруза, просо), растений длинного дня (например, пшеница, рожь, ячмень, овес) и растений, которые сравнительно мало зависят от этого показателя (например, подсолнечник).

Тепло – еще один важнейший фактор, определяющий рост и развитие сельскохозяйственных культур. Обычно запасы тепла исчисляют в виде суммы температур, получаемых растениями за период их вегетации. Этот показатель, называемый суммой активных температур, был предложен известным русским агроклиматологом Г. Т. Селяниновым еще в 30-х гг. XX в. и с тех пор широко вошел в научный оборот. Он представляет собой арифметическую сумму всех средних суточных температур за период вегетации растений. Для большинства зерновых культур умеренного пояса, относительно холодностойких, сумму активных температур обычно подсчитывают для периода, когда средние температуры превышают +5 °C. Для некоторых более теплолюбивых культур – таких, например, как кукуруза, подсолнечник, сахарная свекла, плодовые – отсчет этих температур ведут начиная с показателя +10 °C, для субтропических и тропических – +15 °C.

Влага также представляет собой необходимое условие жизни всех живых организмов и сельскохозяйственных культур. Это объясняется ее участием в фотосинтезе, большой ролью в процессах терморегуляции и переноса питательных веществ. При этом обычно для образования единиц сухого вещества растение должно впитать в себя в сотни раз большее количество влаги.

Для определения размеров потребления влаги растениями и необходимого уровня увлажнения сельскохозяйственных угодий применяют различные показатели. Один из наиболее употребительных показателей – гидротермический коэффициент – также был предложен Г. Т. Селяниновым.

Он представляет собой соотношение осадков и суммы активных температур. Этот показатель используют и для определения влагообеспеченности территории с подразделением ее на очень сухую (гидротермический коэффициент меньше 0,3), сухую (0,4–0,5), засушливую (0,5–0,7), испытывающую недостаток влаги (0,8–1,0), отличающуюся равенством ее прихода и расхода (1,0), обладающую достаточным количеством влаги (1,0–1,5) и ее избытком (более 1,5).

С позиций географического изучения агроклиматических ресурсов большой интерес представляет также агроклиматическое районирование мира. В отечественных источниках за его основу обычно берут схему такого районирования, которая была разработана для Агроклиматического атласа мира, вышедшего в 1972 г. Она составлена с использованием двух главных уровней.

На первом уровне районирование проводилось по степени теплообеспеченности с выделением следующих тепловых поясов и подпоясов:

– холодного пояса с коротким периодом вегетации, где сумма активных температур не превышает 1000 °C, а земледелие в открытом грунте практически невозможно;

– прохладного пояса, где теплообеспеченность возрастает от 1000 °C на севере до 2000 °C на юге, что позволяет выращивать некоторые нетребовательные к теплу культуры, да и то при очаговом земледелии;

– умеренного пояса, где теплообеспеченность изменяется в пределах от 2000 до 4000 °C, а продолжительность вегетационного периода колеблется от 60 до 200 дней, что создает возможности для массового земледелия с широким набором культур (этот пояс подразделяется на два подпояса – типично умеренный и теплоумеренный);

– теплого (субтропического) пояса с суммой активных температур от 4000 до 8000 °C, что позволяет расширить ассортимент сельскохозяйственных культур, введя в него теплолюбивые субтропические виды (в нем также выделяют два подпояса – умеренно теплый и типично теплый);

– жаркого пояса, где сумма активных температур повсеместно превышает 8000 °C, а иногда и 10 000 °C, что позволяет выращивать характерные для тропических и экваториальных зон культуры в течение всего года.

На втором уровне агроклиматического районирования термические пояса и подпояса подразделяются еще на 16 областей, выделяемых в зависимости от режима увлажнения (избыточного, достаточного, недостаточного – в течение как всего года, так и отдельных его сезонов).

Эту же классификацию, но обычно ограниченную первым уровнем и несколько упрощенную, применяют и в учебных атласах, в том числе в школьных. По соответствующим картам нетрудно ознакомиться и с ареалами распространения отдельных термических поясов. Можно определить также, что территория России находится в пределах трех поясов – холодного, прохладного и умеренного. Вот почему основную ее часть занимают земли с низкой и пониженной биологической продуктивностью и сравнительно небольшую – со средней продуктивностью. Ареалы с высокой и очень высокой продуктивностью в ее пределах фактически отсутствуют.

Рекреационные ресурсы

Хорошо известно, какое важное место в жизни современных людей приобрела рекреация.[25] Разнообразные занятия людей, участвующих в рекреации, называют рекреационной деятельностью. Она может быть более пассивной и более активной, вызывать большую или меньшую подвижность населения. При этом она может быть кратковременной (суббота – воскресенье) и длительной (во время отпуска). Для нее характерны сезонные колебания (летом – морские пляжи и берега рек и озер, зимой – районы лыжного и горнолыжного спорта и т. д.).

Рекреационная деятельность основана на использовании рекреационных ресурсов, определяющих рекреационный потенциал той или иной территории. Под рекреационными ресурсами понимают природные и антропогенные объекты, которые обладают такими свойствами, как уникальность, историческая или художественная ценность, эстетическая привлекательность и целебно-оздоровительная значимость, и могут быть использованы для организации различных видов рекреационной деятельности. В зависимости от ее характера принято выделять территории: 1) с высокой интенсивностью рекреации, на которых именно рекреация служит главным видом землепользования (парки, пляжи и другие зоны массового отдыха); 2)со средней интенсивностью рекреации, которые используют и для иных, нерекреационных целей (пригородные зеленые насаждения, лесные полосы); 3) с небольшой интенсивностью рекреации.

Как вытекает из приведенного выше определения, все рекреационные ресурсы можно подразделить на два основных подтипа: природно-рекреационные ресурсы и рекреационные ресурсы антропогенного происхождения.

К природно-рекреационным ресурсам могут относиться и благоприятные с точки зрения рекреации отдельные компоненты природы (рельеф, климат, растительность, водоемы), и целые природные комплексы. Последние могут включать в себя такие «пары» как, например, «лес– водоем», «лес– луг», «холм – поле» и т. д., либо иметь еще более сложное и комплексное строение.

В зависимости от влияния природных факторов на организм человека принято различать три типа рекреационных ресурсов. Первый тип – медико-биологический, с решающей ролью климатических условий (температура, влажность, погода и ее изменчивость, продолжительность безморозного периода и др.), которые во многом определяют комфортность природных комплексов для рекреации. Второй тип – психолого-эстетический, при котором в первую очередь оценивается эстетическое воздействие на человека природного ландшафта в целом или отдельных его компонентов; едва ли не решающую роль при этом играет разнообразие пейзажей. Третий тип – технологический, предполагающий прежде всего возможности инженерно-строительного освоения природно-рекреационных территорий (строительство санаториев, домов отдыха, кемпингов, лыжных и горнолыжных баз и т. д.).

Рекреационные ресурсы антропогенного происхождения чаще называют культурно-историческими ресурсами. Они служат главной предпосылкой для организации культурно-познавательной рекреационной деятельности и во многом определяют рекреационные потоки людей. Такие ресурсы подразделяют на материальные, олицетворенные в конкретных материальных объектах, и духовные, нашедшие отражение в науке, образовании, искусстве, литературе, народном быте и творчестве. Их принято также подразделять на памятники истории, археологии, градостроительства и архитектуры, искусства.

Многие страны уже давно начали составлять своего рода реестры своих главных природных и культурно-исторических достопримечательностей, принимать необходимые меры по их сохранению и одновременно пропагандировать их в качестве объектов рекреации и туризма. Но при всей важности такого национального подхода, еще более важной качественно новой ступенью стало понятие о Всемирном природном и культурном наследии человечества. Объекты Всемирного наследия становятся все более важными центрами рекреационной деятельности, в особенности рекреационно-познавательной. Иными словами, они формируют огромный рекреационный ресурс общечеловеческого значения.










Последнее изменение этой страницы: 2018-04-12; просмотров: 403.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...