Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Молекулярный уровень организации наследственной информации. Нуклеиновые кислоты, их значения.




 

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером. В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах. К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНк, р-РНК.

Дезоксирибонуклеиновая кислота (ДНК) – линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.

Мономерами ДНК являются нуклеотиды. Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания, пятиуглеродного сахара – дезоксирибозы и фосфатной группы.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.

Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность, а также специфичность белков организма, которые кодируются этой последовательностью. Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.

 

Пример: дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.

На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно изменится и белок, кодируемый данным геном. (Воспользовавшись школьным учебником, попытайтесь убедиться в этом.) Изменения в составе нуклеотидов или их последовательности называются мутацией.

Рибонуклеиновая кислота (РНК) – линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Виды РНК. Матричная, или информационная, РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5 % РНК клетки. Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85 % РНК клетки. Транспортная РНК (более 40 видов). Транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70–90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ. АТФ представляет собой нуклеотид, состоящий из азотистого основания – аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Сравните эту цифру с цифрой, обозначающей количество выделенной энергии 1 г глюкозы или жира. Способность запасать такое количество энергии делает АТФ ее универсальным источником. Синтез АТФ происходит в основном в митохондриях.

Строение гена. Гены структурны, регуляторные, синтеза тРНК и рРНК.

Строение. Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов. Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Отсюда ясно, что интроны относятся к некодирующим последовательностям. Они могут располагаться не только в области, ограниченной инициирующим и терминирующим кодонами, но и вне их, в начале или в конце гена. Их длина может превышать 10 т.п.н. У низших эукариот прерывные гены составляют меньшинство всех генов (5 % у дрожжей), а у высших — большинство (94 % у млекопитающих). Отметим, что мозаичность генов найдена и в прокариотических клетках.

РЕГУЛЯТОРНЫЙ ГЕН (ген-регулятор), ГЕН, регулирующий производство других генов. Регуляторные гены активизируют и угнетают группу соседних генов, называемую ОПЕРОН, которая функционирует как единое целое. Встречающиеся обычно у БАКТЕРИЙ, опероны отвечают за формирование ФЕРМЕНТОВ, регулирующие различные процессы обмена веществ.

Структурный ген - любой ген, кодирующий какую-либо полипептидную цепь или молекулу РНК, вклячая регуляторные гены, которые кодируют продукты, определяющие экспрессию других генов.

тРНК - транспортная - переносит аминокислоты в место синтеза белков
рРНК - рибосомная - производит синтез белка

14) Репликация ДНК, ее значения. Самокоррекция и репарация ДНК.

Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК.

Значение репликации:
а) процесс является важным молекулярным механизмом, лежащим в основе всех разновидностей деления клеток проэукариот, б) обеспечивает все типы размножения как одноклеточных, так и многоклеточных организмов,
в) поддерживает постоянство клеточного
состава органов, тканей и организма в результате физиологической регенерации
г) обеспечивает длительное существование отдельных индивидуумов;
д) обеспечивает длительное существование видов организмов;
е) процесс способствует точному удвоению информации;
ж) в процессе репликации возможны ошибки (мутации), что может приводить к нарушениям синтеза белков с развитием патологических изменений.
Уникальное свойство молекулы ДНК удваиваться перед делением клетки называется репликацией.

Самокоррекция заключается в отщеплении ошибочно включенного в цепь ДНК нуклеотида.

 

Репарация (от лат. reparatio — восстановление) — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации.










Генетический код, его свойства.

Генетический код – система записи генетической информации в ДНК (РНК) в виде определенной последовательности нуклеотидов. Последовательность нуклеотидов определяет последовательность включения АК в синтезируемый белок. 3 нуклеотида – триплет – кодон – кодируют 1 АК. Совокупность триплетов и составляет генетический код.

Свойства генетического кода:

1) триплетность

2) вырожденность (избыточность – 1 АК кодируется несколькими триплетами)

3) специфичность (1 кодон кодирует только 1 АК)

4) однонаправленность (от 5’ к 3’ концу)

5) неперекрываемость (один нуклеотид входит в состав только одного кодона)

6) универсальность (у всех живых организмов одинаковые АК кодируются одинаковыми кодонами)

7) отсутствие знаков препинания внутри гена.










Последнее изменение этой страницы: 2018-04-12; просмотров: 590.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...